239 research outputs found
Fast Reachable Set Approximations via State Decoupling Disturbances
With the recent surge of interest in using robotics and automation for civil
purposes, providing safety and performance guarantees has become extremely
important. In the past, differential games have been successfully used for the
analysis of safety-critical systems. In particular, the Hamilton-Jacobi (HJ)
formulation of differential games provides a flexible way to compute the
reachable set, which can characterize the set of states which lead to either
desirable or undesirable configurations, depending on the application. While HJ
reachability is applicable to many small practical systems, the curse of
dimensionality prevents the direct application of HJ reachability to many
larger systems. To address computation complexity issues, various efficient
computation methods in the literature have been developed for approximating or
exactly computing the solution to HJ partial differential equations, but only
when the system dynamics are of specific forms. In this paper, we propose a
flexible method to trade off optimality with computation complexity in HJ
reachability analysis. To achieve this, we propose to simplify system dynamics
by treating state variables as disturbances. We prove that the resulting
approximation is conservative in the desired direction, and demonstrate our
method using a four-dimensional plane model.Comment: in Proceedings of the IEE Conference on Decision and Control, 201
Exact reconstruction of gene regulatory networks using compressive sensing.
BackgroundWe consider the problem of reconstructing a gene regulatory network structure from limited time series gene expression data, without any a priori knowledge of connectivity. We assume that the network is sparse, meaning the connectivity among genes is much less than full connectivity. We develop a method for network reconstruction based on compressive sensing, which takes advantage of the network's sparseness.ResultsFor the case in which all genes are accessible for measurement, and there is no measurement noise, we show that our method can be used to exactly reconstruct the network. For the more general problem, in which hidden genes exist and all measurements are contaminated by noise, we show that our method leads to reliable reconstruction. In both cases, coherence of the model is used to assess the ability to reconstruct the network and to design new experiments. We demonstrate that it is possible to use the coherence distribution to guide biological experiment design effectively. By collecting a more informative dataset, the proposed method helps reduce the cost of experiments. For each problem, a set of numerical examples is presented.ConclusionsThe method provides a guarantee on how well the inferred graph structure represents the underlying system, reveals deficiencies in the data and model, and suggests experimental directions to remedy the deficiencies
- …