1,081 research outputs found

    Topology Changing Process of Coalescing Black Holes on Eguchi-Hanson Space

    Full text link
    We numerically study the event horizons of two kinds of five-dimensional coalescing black hole solutions with different asymptotic structures: the five-dimensional Kastor-Traschen solution (5DKT) and the coalescing black hole solution on Eguchi-Hanson space (CBEH). Topologies of the spatial infinity are S3{\rm S}^3 and L(2;1)=S3/Z2L(2;1)={\rm S}^3/{\mathbb Z}_2, respectively. We show that the crease sets of event horizons are topologically R1{\rm R}^1 in 5DKT and R1×S1{\rm R}^1\times {\rm S}^1 in CBEH, respectively. If we choose the time slices which respect space-time symmetry, the first contact points of the coalescing process is a point in the 5DKT case but a S1{\rm S}^1 in the CBEH case. We also find that in CBEH, time slices can be chosen so that a black ring with S1×S2{\rm S}^1\times {\rm S}^2 topology can be also formed during a certain intermediate period unlike the 5DKT.Comment: 13 pages, 17 figure

    Charged Rotating Kaluza-Klein Black Holes Generated by G2(2) Transformation

    Full text link
    Applying the G_{2(2)} generating technique for minimal D=5 supergravity to the Rasheed black hole solution, we present a new rotating charged Kaluza-Klein black hole solution to the five-dimensional Einstein-Maxwell-Chern-Simons equations. At infinity, our solution behaves as a four-dimensional flat spacetime with a compact extra dimension and hence describes a Kaluza-Klein black hole. In particlar, the extreme solution is non-supersymmetric, which is contrast to a static case. Our solution has the limits to the asymptotically flat charged rotating black hole solution and a new charged rotating black string solution.Comment: 24 page

    Wave-vector and polarization dependence of conical refraction

    Full text link
    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal

    Rotating Black Holes on Kaluza-Klein Bubbles

    Full text link
    Using the solitonic solution generating techniques, we generate a new exact solution which describes a pair of rotating black holes on a Kaluza-Klein bubble as a vacuum solution in the five-dimensional Kaluza-Klein theory. We also investigate the properties of this solution. Two black holes with topology S^3 are rotating along the same direction and the bubble plays a role in holding two black holes. In static case, it coincides with the solution found by Elvang and Horowitz.Comment: 16 pages, 1 figure, minor correctio

    Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method

    Full text link
    We study stationary and axially symmetric two solitonic solutions of five dimensional vacuum Einstein equations by using the inverse scattering method developed by Belinski and Zakharov. In this generation of the solutions, we use five dimensional Minkowski spacetime as a seed. It is shown that if we restrict ourselves to the case of one angular momentum component, the generated solution coincides with a black ring solution with a rotating two sphere which was found by Mishima and Iguchi recently.Comment: 10 pages, accepted for publication in Physical Review

    Nonlinear resonance interaction of ultrasonic waves under applied stress

    Full text link
    Copyright 1984 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics, 56(1), 235-237, 1984 and may be found at http://dx.doi.org/10.1063/1.33375

    Relationship Between Solitonic Solutions of Five-Dimensional Einstein Equations

    Get PDF
    We give the relation between the solutions generated by the inverse scattering method and the B\"acklund transformation applied to the vacuum five-dimensional Einstein equations. In particular, we show that the two-solitonic solutions generated from an arbitrary diagonal seed by the B\"acklund transformation are contained within those generated from the same seed by the inverse scattering method.Comment: 17 pages, Some references are added, to be published in Phys.Rev.

    Topology Change of Coalescing Black Holes on Eguchi-Hanson Space

    Get PDF
    We construct multi-black hole solutions in the five-dimensional Einstein-Maxwell theory with a positive cosmological constant on the Eguchi-Hanson space, which is an asymptotically locally Euclidean space. The solutions describe the physical process such that two black holes with the topology of S^3 coalesce into a single black hole with the topology of the lens space L(2;1)=S^3/Z_2. We discuss how the area of the single black hole after the coalescence depends on the topology of the horizon.Comment: 10 pages, Some comments are added. to be published as a letter in Classical and Quantum Gravit

    Boundary Value Problem for Black Rings

    Full text link
    We study the boundary value problem for asymptotically flat stationary black ring solutions to the five-dimensional vacuum Einstein equations. Assuming the existence of two additional commuting axial Killing vector fields and the horizon topology of S1×S2S^1\times S^2, we show that the only asymptotically flat black ring solution with a regular horizon is the Pomeransky-Sen'kov black ring solution.Comment: 21 pages, 1 figur

    Super-Gaussian conical refraction beam

    Get PDF
    We demonstrate the transformation of Gaussian input beams into super-Gaussian beams with a quasi flat-top transverse profile by means of the conical refraction phenomenon by adjusting the ratio between the ring radius and the waist radius of the input beam to 0.445. We discuss the beam propagation of the super-Gaussian beam and show that it has a confocal parameter three times larger than the one that would be obtained from a Gaussian beam. The experiments performed with a KGd(WO4)2 biaxial crystal are in good agreement with the theoretical predictions
    corecore