20 research outputs found

    Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate–ubiquinone oxidoreductase

    Get PDF
    AbstractWe have mapped large (cybL) and small (cybS) subunits of cytochrome b in the succinate–ubiquinone oxidoreductase (complex II) of human mitochondria to chromosome 1q21 and 11q23, respectively (H. Hirawake et al., Cytogenet. Cell Genet. 79 (1997) 132–138). In the present study, the human SDHD gene encoding cybS was cloned and characterized. The gene comprises four exons and three introns extending over 19 kb. Sequence analysis of the 5′ promoter region showed several motifs for the binding of transcription factors including nuclear respiratory factors NRF-1 and NRF-2 at positions −137 and −104, respectively. In addition to this gene, six pseudogenes of cybS were isolated and mapped on the chromosome

    The influences of low protein diet on the intestinal microbiota of mice

    Get PDF
    Recent research suggests that protein deficiency symptoms are influenced by the intestinal microbiota. We investigated the influence of low protein diet on composition of the intestinal microbiota through animal experiments. Specific pathogen-free (SPF) mice were fed one of four diets (3, 6, 9, or 12% protein) for 4 weeks (n = 5 per diet). Mice fed the 3% protein diet showed protein deficiency symptoms such as weight loss and low level of blood urea nitrogen concentration in their serum. The intestinal microbiota of mice in the 3% and 12% protein diet groups at day 0, 7, 14, 21 and 28 were investigated by 16S rRNA gene sequencing, which revealed differences in the microbiota. In the 3% protein diet group, a greater abundance of urease producing bacterial species was detected across the duration of the study. In the 12% diet protein group, increases of abundance of Streptococcaceae and Clostridiales families was detected. These results suggest that protein deficiency may be associated with shifts in intestinal microbiota

    Profiling of faecal water and urine metabolites among Papua New Guinea highlanders believed to be adapted to low protein intake

    No full text
    Introduction: Adequate amount of proteins from foods are normally needed to maintain muscle mass of the human body. Although protein intakes of Papua New Guinea (PNG) highlanders are less than biologically adequate, protein deficiency related disorders have rarely been reported. It has been postulated that gut microbiota play a role in such low-protein-adaptation. Objective: To explore underlying biological mechanisms of low-protein adaptation among PNG highlanders by investigating metabolomic profiles of faecal water and urine. Methods: We performed metabolome analysis using faecal water extracted from faecal samples of PNG highlanders, PNG non-highlanders and Japanese subjects. We paid special attention to amino acids and other metabolites produced by gut microbiota, as well as to metabolites involved in nitrogen recycling in the human gut. Results: Our results indicated that amino acid levels were higher in faecal water from PNG highlanders than PNG non-highlanders, but amino acid levels did not differ between PNG highlanders and Japanese subjects. Among PNG highlander samples, amino acid levels tended to be higher in those who consumed less protein. Conclusion: We speculated that a greater proportion of urea was excreted to the intestine among the PNG highlanders than other groups, and that the urea was used for nitrogen salvage. Intestinal bacteria are essential for producing ammonia from urea and also for producing amino acids from ammonia, which is a key process in low-protein adaptation. Profiling the gut microbiota of PNG highlanders is an important avenue for further research into the mechanisms of low-protein adaptation

    A high burden of asymptomatic gastrointestinal infections in traditional communities in Papua New Guinea

    Get PDF
    Stool samples were collected from 148 healthy adults living a traditional subsistence lifestyle in Papua New Guinea and screened for enteric pathogens using real-time RT-PCR/PCR assays. Enteric pathogens were detected in a high proportion (41%) of individuals. Clear differences were observed in the detection of pathogens between highland and lowland communities. In particular, there was a marked difference in detection rates of norovirus GII (20% and 0%, respectively) and Shigella sp. (15% and 0%, respectively). Analysis of the relationship between enteric pathogen carriage and microbial community composition of participants, using box plots to compare specific normal flora population numbers, did not suggest that gut microbial composition was directly associated with pathogen carriage. This study suggests that enteric pathogens are common in healthy individuals in Papua New Guinean highland communities, presumably acting as a reservoir of infection and thus contributing to a high burden of gastrointestinal illnesses

    Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR

    Get PDF
    There has been considerable interest in composition of gut microbiota in recent years, leading to a better understanding of the role the gut microbiota plays in health and disease. Most studies have been limited in their geographical and socioeconomic diversity to high-income settings, and have been conducted using small sample sizes. To date, few analyses have been conducted in low-income settings, where a better understanding of the gut microbiome could lead to the greatest return in terms of health benefits. Here, we have used quantitative real-time polymerase chain reaction targeting dominant and sub-dominant groups of microorganisms associated with human gut microbiome in 115 people living a subsistence lifestyle in rural areas of Papua New Guinea. Quantification of Clostridium coccoides group, C. leptum subgroup, C. perfringens, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, Prevotella, Enterobacteriaceae, Enterococcus, Staphylococcus, and Lactobacillus spp. was conducted. Principle coordinates analysis (PCoA) revealed two dimensions with Prevotella, clostridia, Atopobium, Enterobacteriaceae, Enterococcus and Staphylococcus grouping in one dimension, while B. fragilis, Bifidobacterium and Lactobacillus grouping in the second dimension. Highland people had higher numbers of most groups of bacteria detected, and this is likely a key factor for the differences revealed by PCoA between highland and lowland study participants. Age and sex were not major determinants in microbial population composition. The study demonstrates a gut microbial composition with some similarities to those observed in other low-income settings where traditional diets are consumed, which have previously been suggested to favor energy extraction from a carbohydrate rich diet

    Nitrogen fixation and nifH diversity in human gut microbiota

    Get PDF
    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance

    Comparison of population numbers of selected microbial groups in children, adolescents and adults.

    No full text
    <p>Children <5 years old; adolescents 5–17 years old; adults ≥18 years old. All Kruskal-Wallis tests were conducted on child, adolescent and adult groups.</p><p>Comparison of population numbers of selected microbial groups in children, adolescents and adults.</p
    corecore