93 research outputs found

    Gene Therapy for Retinitis Pigmentosa

    Get PDF

    Displaced learners in Japan : student evacuees and policy liminality

    Get PDF
    Building upon a growing literature addressing the intersection of displacement and higher education, this chapter draws upon interviews with Japanese university officials to examine how so-called student evacuees are being admitted and supported by Higher Education Institutions (HEIs) in Japan. Analysing interviews with a thematic analysis, we find that a side door to students displaced by conflict appears to be slowly opening in Japan, starting in a limited capacity in 2017 and growing thereafter. Located at the nexus of migration policy, higher education administration, and the internationalisation of higher education, we consider this topic as reflective of policy gaps and, concurrently, promising innovation in the reception of displaced learners and refugees in Japan

    Increase of Pro-opiomelanocortin mRNA Prior to Tyrosinase, Tyrosinase-Related Protein 1, Dopachrome Tautomerase, Pmel-17/gp100, and P-Protein mRNA in Human Skin After Ultraviolet B Irradiation

    Get PDF
    In ultraviolet-induced tanning, the protein levels of various gene products critical for pigmentation (including tyrosinase and tyrosinase-related protein-1) are increased in response to ultraviolet B irradiation, but changes in mRNA levels of these factors have not been investigated in vivo. We have established an in situ hybridization technique to investigate mRNA levels of pro-opiomelanocortin, tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, P-protein, Pmel-17/gp100, and microphthalmia-associated transcription factor, and have analyzed the changes in mRNA levels in the ultraviolet B-exposed skin in vivo. The right or left forearm of each volunteer was irradiated with ultraviolet B, and skin biopsies were obtained at 2 and 5 d postirradiation. mRNA level of pro- opiomelanocortin was increased 2 d after ultraviolet B irradiation, and returned to a near-basal level after 5 d, whereas the mRNA levels of tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, P-protein, and Pmel-17/gp100 showed some or no increase at 2 d, but were significantly increased 5 d after ultraviolet B irradiation. Microphthalmia-associated transcription factor mRNA was slightly increased on days 2 and 5 after ultraviolet B irradiation. Our results suggest that the mechanism of the tanning response of human skin may involve the transcriptional regulation of certain pigmentary genes, and that pro-opiomelanocortin-derived melanocortins such as α-melanocyte-stimulating hormone and adrenocorticotropic hormone may play a part in regulating these genes in vivo

    Essential Role of Thioredoxin 2 in Mitigating Oxidative Stress in Retinal Epithelial Cells

    Get PDF
    The retina is constantly subjected to oxidative stress, which is countered by potent antioxidative systems present in retinal pigment epithelial (RPE) cells. Disruption of these systems leads to the development of age-related macular degeneration. Thioredoxin 2 (Trx2) is a potent antioxidant, which acts directly on mitochondria. In the present study, oxidative stress was induced in the human RPE cell line (ARPE-19) using 4-hydroxynonenal (4-HNE) or C2-ceramide. The protective effect of Trx2 against oxidative stress was investigated by assessing cell viability, the kinetics of cell death, mitochondrial metabolic activity, and expression of heat shock proteins (Hsps) in Trx2-overexpressing cell lines generated by transfecting ARPE cells with an adeno-associated virus vector encoding Trx2. We show that overexpression of Trx2 reduced cell death induced by both agents when they were present in low concentrations. Moreover, early after the induction of oxidative stress Trx2 played a key role in the maintenance of the cell viability through upregulation of mitochondrial metabolic activity and inhibition of Hsp70 expression

    Design and synthesis of amidine-type peptide bond isosteres: application of nitrile oxide derivatives as active ester equivalents in peptide and peptidomimetics synthesis.

    Get PDF
    Amidine-type peptide bond isosteres were designed based on the substitution of the peptide bond carbonyl (C=O) group with an imino (C=NH) group. The positively-charged property of the isosteric part resembles a reduced amide-type peptidomimetic. The peptidyl amidine units were synthesized by the reduction of a key amidoxime (N-hydroxyamidine) precursor, which was prepared from nitrile oxide components as an aminoacyl or peptidyl equivalent. This nitrile oxide-mediated C-N bond formation was also used for peptide macrocyclization, in which the amidoxime group was converted to peptide bonds under mild acidic conditions. Syntheses of the cyclic RGD peptide and a peptidomimetic using both approaches, and their inhibitory activity against integrin-mediated cell attachment, are presented

    Visual Properties of Transgenic Rats Harboring the Channelrhodopsin-2 Gene Regulated by the Thy-1.2 Promoter

    Get PDF
    Channelrhodopsin-2 (ChR2), one of the archea-type rhodopsins from green algae, is a potentially useful optogenetic tool for restoring vision in patients with photoreceptor degeneration, such as retinitis pigmentosa. If the ChR2 gene is transferred to retinal ganglion cells (RGCs), which send visual information to the brain, the RGCs may be repurposed to act as photoreceptors. In this study, by using a transgenic rat expressing ChR2 specifically in the RGCs under the regulation of a Thy-1.2 promoter, we tested the possibility that direct photoactivation of RGCs could restore effective vision. Although the contrast sensitivities of the optomotor responses of transgenic rats were similar to those observed in the wild-type rats, they were enhanced for visual stimuli of low-spatial frequency after the degeneration of native photoreceptors. This result suggests that the visual signals derived from the ChR2-expressing RGCs were reinterpreted by the brain to form behavior-related vision

    Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin

    Get PDF
    X線自由電子レーザーを用いて、光照射によるチャネルロドプシンの構造変化の過程を捉えることに成功. 京都大学プレスリリース. 2021-03-26.Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore

    CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Has Anti-Aging Effects That Protect Articular Cartilage from Age-Related Degenerative Changes

    Get PDF
    To examine the role of connective tissue growth factor CCN2/CTGF (CCN2) in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG) overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS) was measured by using primary cultures of chondrocytes obtained from wild-type (WT) rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage
    corecore