156 research outputs found

    Applications of a novel biodetection system to saliva using protein fingerprints with data processing

    Get PDF
    A fundamental method has been developed focusing on a facile and rapid examination of periodontal disease. Periodontal disease is an oral disease thought to affect 80% of adults, and early detection with treatment is desirable for the improvement of the quality of life. Unfortunately conventional methods are not consistent as the disease is caused by a number of bacteria and detection relies on the skills of the dentist. Thus an objective detection system is required. We have performed an experiment on saliva using a novel biodetection system, designated PepTenChip®. A disease model for saliva was prepared using a specimen from a healthy subject and a mixture of hemoglobin (f-Hb) and lactate dehydrogenase (LDH), which is used as a periodontal disease marker protein with healthy saliva. PepTenChip® is a peptide microarray in which fluorescent labelled structured peptides are immobilized on a novel amorphous carbon substrate. Since the peptides used as capture molecules are fluorescently labelled, labeling of analytes is not necessary. The fluorescence intensity change before and after application of analytes are detected rather than the ON/OFF detection common to conventional microarrays using a set of antigen-antibody. The fluorescence intensity value changes according to the concentration of captured protein allowing the generation of protein fingerprint (PFP) and dendrograms. The present method does not rely on a "one to one" interaction, unlike conventional biodetection, and advantages can be envisaged in the case of an undefined or unknown cause of disease. The statistical analyses, such as multivariate analyses, allow classification of the type of proteins added in saliva as mimetics of disease. PepTenChip® system is useful and convenient for examination of periodontal disease in health care

    Factual survey of the clinical use of deformable image registration software for radiotherapy in Japan

    Get PDF
    Deformable image registration (DIR) has recently become commercially available in the field of radiotherapy. However, there was no detailed information regarding the use of DIR software at each medical institution. Thus, in this study, we surveyed the status of the clinical use of DIR software for radiotherapy in Japan. The Japan Society of Medical Physics and the Japanese Society for Radiation Oncology mailing lists were used to announce this survey. The questionnaire was created by investigators working under the research grant of the Japanese Society for Radiation Oncology (2017–2018) and intended for the collection of information regarding the use of DIR in radiotherapy. The survey was completed by 161 institutions in Japan. The survey results showed that dose accumulation was the most frequent purpose for which DIR was used in clinical practice (73%). Various commissioning methods were performed, although they were not standardized. Qualitative evaluation with actual patient images was the most commonly used method (28%), although 30% of the total number of responses (42% of institutions) reported that they do not perform commissioning. We surveyed the current status of clinical use of DIR software for radiotherapy in Japan for the first time. Our results indicated that a certain number of institutions used DIR software for clinical practice, and various commissioning methods were performed, although they were not standardized. Taken together, these findings highlight the need for a technically unified approach for commissioning and quality assurance for the use of DIR software in Japan

    Circadian Rhythms Fluctuate the Treatment Effects of Intravesical Treatments on Rat Urinary Frequency Models

    Get PDF
    Objectives. It is still not clear how the intravesical instillation of drugs affects rat urinary frequency. This study aimed to examine the dynamics of intravesical treatments' treatment effect on rat urinary frequency models by real-time and extended monitoring using a novel continuous urination monitoring system. Methods. Nine eleven-week-old female Wistar rats were divided into three groups to receive intravesical instillation of 0.1% acetic acid (AA), 1.0% AA, or phosphate-buffered saline (PBS). Thirty minutes later, these drugs were voided, and rats were moved to a continuous urination monitoring system, UM-100. UM-100 monitored rat urination quantitatively and continuously for 24 hours. Rats were then euthanized, and histopathologic examinations using a damage score validated the severity of bladder inflammation. We used nine additional rats to determine the treatment effect of various drugs against the urinary frequency. These rats were also treated with 1.0% AA in the same way and divided into three groups (n = 3 each) to receive intravesical instillation of lidocaine, silver nitrate (AgNO3), or dimethyl sulfoxide (DMSO), respectively. Thirty minutes later, rats were catheterized again and moved to the UM-100, and their voiding was monitored for 24 hours. Results. Intravesical instillation of AA increased the urinary frequency and decreased the mean voided volume (VV) in a concentration-dependent manner, with statistical significance at a concentration of 1.0% (urinary frequency; p = 0.0007 , mean VV; p = 0.0032 , respectively) compared with PBS. Histopathological analysis of these models demonstrated a significantly higher damage score of bladder mucosa in both 0.1% AA and 1.0% AA compared with PBS, with the severity in concordance with the clinical severity of urinary frequency (0.1% AA: p < 0.0001 , 1.0% AA: p < 0.0001 ). Moreover, intravesical instillation of lidocaine, AgNO3, and DMSO decreased the urinary frequency. Continuous monitoring with UM-100 also demonstrated that the treatment effect of these intravesically instilled drugs occurred only at night. Conclusions. The extended monitoring of rat urination by UM-100 revealed a significant fluctuation in the treatment effect of intravesically instilled drugs between day and night. These findings may help establish novel therapies for urinary frequency

    A cascading nonlinear magneto-optical effect in topological insulators

    Get PDF
    Topological insulators (TIs) are characterized by possessing metallic (gapless) surface states and a finite band-gap state in the bulk. As the thickness of a TI layer decreases down to a few nanometers, hybridization between the top and bottom surfaces takes place due to quantum tunneling, consequently at a critical thickness a crossover from a 3D-TI to a 2D insulator occurs. Although such a crossover is generally accessible by scanning tunneling microscopy, or by angle-resolved photoemission spectroscopy, such measurements require clean surfaces. Here, we demonstrate that a cascading nonlinear magneto-optical effect induced via strong spin-orbit coupling can examine such crossovers. The helicity dependence of the time-resolved Kerr rotation exhibits a robust change in periodicity at a critical thickness, from which it is possible to predict the formation of a Dirac cone in a film several quintuple layers thick. This method enables prediction of a Dirac cone using a fundamental nonlinear optical effect that can be applied to a wide range of TIs and related 2D materials

    Chronic hyperglycemia reduces the expression of intercellular adhesion molecules and increases intercellular hyperpermeability in the periodontal epithelium

    Full text link
    This is the peer reviewed version of the following article: Narukawa Y., Sugiyama N., Miura J., et al. Chronic hyperglycemia reduces the expression of intercellular adhesion molecules and increases intercellular hyperpermeability in the periodontal epithelium. Journal of Periodontal Research 58, 813 (2023), which has been published in final form at https://doi.org/10.1111/jre.13140 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Background/Aims: Hyperglycemia in diabetes is closely associated with periodontal disease progression. This study aimed to investigate the effect of hyperglycemia on the barrier function of gingival epithelial cells as a cause of hyperglycemia-exacerbated periodontitis in diabetes mellitus. Methods: The abnormal expression of adhesion molecules in gingival epithelium in diabetes was compared between db/db and control mice. To study the effects of hyperglycemia on interepithelial cell permeability, the mRNA and protein expressions of adhesion molecules were investigated using a human gingival epithelial cell line (epi 4 cells) in the presence of either 5.5 mM glucose (NG) or 30 mM glucose (HG). Immunocytochemical and histological analyses were performed. We also studied HG-related intracellular signaling to assess abnormal adhesion molecule expression in the cultured epi 4 cells. Results: The results of the proteomic analysis implied the abnormal regulation of cell–cell adhesion, and mRNA and protein expression assessments revealed the significant downregulation of Claudin1 expression in the gingival tissues of db/db mice (p <.05 vs control). Similarly, the mRNA and protein expressions of adhesion molecules were lower in epi 4 cells cultured under HG conditions than in those cultured under NG conditions (p <.05). Three-dimensional culture and transmission electron microscopy revealed reduced thickness of the epithelial cell layers with no flattened apical cells and heterogeneously arranged intercellular spaces among adjacent epi 4 cells under the HG. These results were consistent with the increased permeability of epi 4 cells under the HG relative to that of cells under the NG. This abnormal expression of intercellular adhesion molecules under the HG was related to the increased expression of receptors for advanced glycation end products (AGEs) and oxidative stress relative to that seen under the NG, along with stimulation of ERK1/2 phosphorylation in epi 4 cells. Conclusions: High glucose-induced impairment of intercellular adhesion molecule expression in gingival epithelial cells was related to the intercellular permeability of gingival cells, representing a possible link to hyperglycemia-related AGE signaling, oxidative stress, and ERK1/2 activation
    corecore