360 research outputs found
Lung Cancer Associated with Sarcoidosis - A case report -
Sarcoidosis is a somewhat common pulmonary disease, but the concurrence of lung cancer and sarcoidosis in the same patient is very rare. Because sarcoidosis usually presents as mediastinal lymphadenopathies, this concurrence in a lung cancer patient detected radiologically is apt to be misunderstood to be mediastinal metastases, and it is thus considered to be an unresectable disease. We report a case of lung cancer associated with sarcoidosis that developed in a 65-year-old woman who underwent surgery. Radiological studies revealed a 1.9×1.7 cm mass in the left upper lobe with multiple enlarged bilateral mediastinal lymph nodes (2R, 3a, 4R, 4L, 5, 6, 7, 8R). Pathologic findings showed that the mass was a well-differentiated adenocarcinoma and all of the enlarged mediastinal lymph nodes were granulomas without cancer metastasis. We report this case with a review of the literature
Clinical significance of ribosomal protein S15 expression in patients with colorectal cancer liver metastases
Sakano Y., Matoba D., Noda T., et al. Clinical significance of ribosomal protein S15 expression in patients with colorectal cancer liver metastases. Journal of Hepato-Biliary-Pancreatic Sciences, (2024); https://doi.org/10.1002/jhbp.12012.Background: Liver metastasis is the most frequently observed distant metastasis of colorectal cancer, and the residual liver recurrence rate after hepatic resection is still high. To explore the mechanism of liver metastasis to discover potential new treatments, we assessed the relationship between the expression of differentially expressed genes (DEGs) and prognosis in patients with colorectal cancer liver metastasis (CRLM). Methods: The gene expression dataset was extracted from The Cancer Genome Atlas and the Gene Expression Omnibus. Significance analysis of DEGs between tumor and normal samples of colorectum, liver, and lung was conducted. A total of 80 CRLM patients were studied to assess the expression of RPS15, characteristics, and outcomes. We examined the relationships of RPS15 expression to cell viability and apoptosis in vitro and vivo. Results: Significance analysis identified 33 DEGs. In our cohorts, the overall survival rates were significantly lower in the high-RPS15-expression group, and high expression of RPS15 was an independent and unfavorable prognostic factor in recurrence-free survival and overall survival. Knockdown of RPS15 expression reduced the proliferative capacity of colorectal cancer cells and increased BAX-induced apoptotic cell death. Conclusions: RPS15 expression is an independent prognostic factor for CRLM patients and might be a novel therapeutic target for CRLM
Difference between carbohydrate antigen 19-9 and fluorine-18 fluorodeoxyglucose positron emission tomography in evaluating the treatment efficacy of neoadjuvant treatment in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma: Results of a dual-center study
kita, H, Takahashi, H, Eguchi, H, et al. Difference between carbohydrate antigen 19‐9 and fluorine‐18 fluorodeoxyglucose positron emission tomography in evaluating the treatment efficacy of neoadjuvant treatment in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma: Results of a dual‐center study. Ann Gastroenterol Surg. 2020; 00: 1– 9. https://doi.org/10.1002/ags3.12418
KLK10 derived from tumor endothelial cells accelerates colon cancer cell proliferation and hematogenous liver metastasis formation
Kato K., Noda T., Kobayashi S., et al. KLK10 derived from tumor endothelial cells accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. Cancer Science , (2024); https://doi.org/10.1111/cas.16144.Tumor endothelial cells (TECs), which are thought to be structurally and functionally different from normal endothelial cells (NECs), are increasingly attracting attention as a therapeutic target in hypervascular malignancies. Although colorectal liver metastasis (CRLM) tumors are hypovascular, inhibitors of angiogenesis are a key drug in multidisciplinary therapy, and TECs might be involved in the development and progression of cancer. Here, we analyzed the function of TEC in the CRLM tumor microenvironment. We used a murine colon cancer cell line (CT26) and isolated TECs from CRLM tumors. TECs showed higher proliferation and migration than NECs. Coinjection of CT26 and TECs yielded rapid tumor formation in vivo. Immunofluorescence analysis showed that coinjection of CT26 and TECs increased vessel formation and Ki-67+ cells. Transcriptome analysis identified kallikrein-related peptide 10 (KLK10) as a candidate target. Coinjection of CT26 and TECs after KLK10 downregulation with siRNA suppressed tumor formation in vivo. TEC secretion of KLK10 decreased after KLK10 downregulation, and conditioned medium after KLK10 knockdown in TECs suppressed CT26 proliferative activity. Double immunofluorescence staining of KLK10 and CD31 in CRLM tissues revealed a significant correlation between poor prognosis and positive KLK10 expression in TECs and tumor cells. On multivariate analysis, KLK10 expression was an independent prognostic factor in disease-free survival. In conclusion, KLK10 derived from TECs accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. KLK10 in TECs might offer a promising therapeutic target in CRLM
Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice
Kado T., Tomimaru Y., Kobayashi S., et al. Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice. Journal of Diabetes Research 2024, 5574968 (2024); https://doi.org/10.1155/2024/5574968.Islet transplantation (ITx) is an established and safe alternative to pancreas transplantation for type 1 diabetes mellitus (T1DM) patients. However, most ITx recipients lose insulin independence by 3 years after ITx due to early graft loss, such that multiple donors are required to achieve insulin independence. In the present study, we investigated whether skeletal myoblast cells could be beneficial for promoting angiogenesis and maintaining the differentiated phenotypes of islets. In vitro experiments showed that the myoblast cells secreted angiogenesis-related cytokines (vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and stromal-derived factor-1α (SDF-1α)), contributed to maintenance of differentiated islet phenotypes, and enhanced islet cell insulin secretion capacity. To verify these findings in vivo, we transplanted islets alone or with myoblast cells under the kidney capsule of streptozotocin-induced diabetic mice. Compared with islets alone, the group bearing islets with myoblast cells had a significantly lower average blood glucose level. Histological examination revealed that transplants with islets plus myoblast cells were associated with a significantly larger insulin-positive area and significantly higher number of CD31-positive microvessels compared to islets alone. Furthermore, islets cotransplanted with myoblast cells showed JAK-STAT signaling activation. Our results suggest two possible mechanisms underlying enhancement of islet graft function with myoblast cells cotransplantation: "indirect effects"mediated by angiogenesis and "direct effects"of myoblast cells on islets via the JAK-STAT cascade. Overall, these findings suggest that skeletal myoblast cells enhance the function of transplanted islets, implying clinical potential for a novel ITx procedure involving myoblast cells for patients with diabetes
Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality
Sato H., Meng S., Sasaki K., et al. Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality. International Journal of Oncology 65, 74 (2024); https://doi.org/10.3892/ijo.2024.5662.Signal recognition particles (SRPs) are essential for regulating intracellular protein transport and secretion. Patients with tumors with high SRP9 expression tend to have a poorer overall survival. However, to the best of our knowledge, no reports have described the relationship between SRP9 localization and prognosis in pancreatic cancer. Thus, the present study aimed to investigate this relationship. Immunohistochemical staining for SRP9 using excised specimens from pancreatic cancer surgery cases without preoperative chemotherapy or radiotherapy showed that SRP9 was preferentially expressed in the nucleus of the cancerous regions in some cases, which was hardly detected in other cases, indicating that SRP9 was transported to the nucleus in the former cases. To compare the prognosis of patients with SRP9 nuclear translocation, patients were divided into two groups: Those with a nuclear translocation rate of >50% and those with a nuclear translocation rate of ≤50%. The nuclear translocation rate of >50% group had a significantly better recurrence-free survival than the nuclear translocation rate of ≤50% group (P=0.037). Subsequent in vitro experiments were conducted; notably, the nuclear translocation rate of SRP9 was reduced under amino acid-deficient conditions, suggesting that multiple factors are involved in this phenomenon. To further study the function of SRP9 nuclear translocation, in vitro experiments were performed by introducing SRP9 splicing variants (v1 and v2) and their deletion mutants lacking C-terminal regions into MiaPaCa pancreatic cancer cells. The results demonstrated that both splicing variants showed nuclear translocation regardless of the C-terminal deletions, suggesting the role of the N-terminal regions. Given that SRP9 is an RNA-binding protein, the study of RNA immunoprecipitation revealed that signaling pathways involved in cancer progression and protein translation were downregulated in nuclear-translocated v1 and v2. Undoubtedly, further studies of the nuclear translocation of SRP9 will open an avenue to optimize the precise evaluation and therapeutic control of pancreatic cancer
Alveolar Echinococcosis Mimicking a Hepatic Neoplasm with Lymph Node Metastasis: A Case Report
A 37-year-old man had an asymptomatic 17-mm mass in the liver by health check with ultrasonography. Five years later, he was referred to our hospital because the mass was slightly enlarged with a peripancreatic lymph node. We performed endoscopic ultrasonography fine-needle aspiration (EUS-FNA) to evaluate a lymph node, but it showed amorphous eosinophilic material and eosinophilic infiltrate in necrotic tissue of toothpaste-like white specimen. However, we diagnosed as potentially malignant liver mass with lymph node metastasis because of 2-deoxy-2-(fluorine-18) fluorodeoxyglucose uptake. We then performed hepatectomy and enucleation of the pancreas. DNA polymerase chain reaction analysis revealed Echinococcus multilocularis infection. Retrospectively, we could find a part of Echinococcus in the specimens of EUS-FNA
A Computational Framework Discovers New Copy Number Variants with Functional Importance
Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest component. A recent population-based CNV study revealed the need of better characterization of CNVs, especially the small ones (<500 bp).We propose a three step computational framework (Identification of germline Changes in Copy Number or IgC2N) to discover and genotype germline CNVs. First, we detect candidate CNV loci by combining information across multiple samples without imposing restrictions to the number of coverage markers or to the variant size. Secondly, we fine tune the detection of rare variants and infer the putative copy number classes for each locus. Last, for each variant we combine the relative distance between consecutive copy number classes with genetic information in a novel attempt to estimate the reference model bias. This computational approach is applied to genome-wide data from 1250 HapMap individuals. Novel variants were discovered and characterized in terms of size, minor allele frequency, type of polymorphism (gains, losses or both), and mechanism of formation. Using data generated for a subset of individuals by a 42 million marker platform, we validated the majority of the variants with the highest validation rate (66.7%) was for variants of size larger than 1 kb. Finally, we queried transcriptomic data from 129 individuals determined by RNA-sequencing as further validation and to assess the functional role of the new variants. We investigated the possible enrichment for variant's regulatory effect and found that smaller variants (<1 Kb) are more likely to regulate gene transcript than larger variants (p-value = 2.04e-08). Our results support the validity of the computational framework to detect novel variants relevant to disease susceptibility studies and provide evidence of the importance of genetic variants in regulatory network studies
- …