55 research outputs found
Resonant two-magnon Raman scattering in antiferromagnetic insulators
We propose a theory of two-magnon {\it resonant\/} Raman scattering from
antiferromagnetic insulators, which contains information both on the magnetism
and the carrier properties in the lighly doped phases. We argue that the
conventional theory does not work in the resonant regime, in which the energy
of the incident photon is close to the gap between the conduction and valence
bands. We identify the diagram which gives the dominant contribution to Raman
intensity in this regime and show that it can explain the unusual features in
the two-magnon profile and in the two-magnon peak intensity dependence on the
incoming photon frequency.Comment: 11 pages (REVTeX) + 3 figures in a single postscript file are
appended in uuencoded format, preprint TCSUH-94:09
Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO
We describe here the properties expected of a higher (with emphasis on the
order fourth) order phase transition. The order is identified in the sense
first noted by Ehrenfest, namely in terms of the temperature dependence of the
ordered state free energy near the phase boundary. We have derived an equation
for the phase boundary in terms of the discontinuities in thermodynamic
observables, developed a Ginzburg-Landau free energy and studied the
thermodynamic and magnetic properties. We also discuss the current status of
experiments on and other based superconductors,
the expectations for parameters and examine alternative explanations of the
experimental results.Comment: 18 pages, no figure
Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates
A systematic inelastic neutron scattering study of the superexchange
interaction in three different undoped monolayer cuprates (La_2CuO_4, Nd_2CuO_4
and Pr_2CuO_4) has been performed using conventional triple axis technique. We
deduce the in-plane antiferromagnetic (AF) superexchange coupling which
actually presents no simple relation versus crystallographic parameters. The
absolute spectral weight of the spin susceptibility has been obtained and it is
found to be smaller than expected even when quantum corrections of the AF
ground state are taken into account.Comment: 13 pages, 1 table, 3 figure
Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators
We present results of low-temperature two-magnon resonance Raman excitation
profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 +
\delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These
data reveal composite structure of the two-magnon line shape and strong
nonmonotic dependence of the scattering intensity on excitation energy. We
analyze these data using the triple resonance theory of Chubukov and Frenkel
(Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic
interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure
Universal Static and Dynamic Properties of the Structural Transition in Pb(Zn1/3Nb2/3)O3
The relaxors Pb(ZnNb)O (PZN) and
Pb(MgNb)O (PMN) have very similar properties based on the
dielectric response around the critical temperature (defined by the
structural transition under the application of an electric field). It has been
widely believed that these materials are quite different below with the
unit cell of PMN remaining cubic while in PZN the low temperature unit cell is
rhombohedral in shape. However, this has been clarified by recent high-energy
x-ray studies which have shown that PZN is rhombohedral only in the skin while
the shape of the unit cell in the bulk is nearly cubic. In this study we have
performed both neutron elastic and inelastic scattering to show that the
temperature dependence of both the diffuse and phonon scattering in PZN and PMN
is very similar. Both compounds show a nearly identical recovery of the soft
optic mode and a broadening of the acoustic mode below . The diffuse
scattering in PZN is suggestive of an onset at the high temperature Burns
temperature similar to that in PMN. In contrast to PMN, we observe a broadening
of the Bragg peaks in both the longitudinal and transverse directions below
. We reconcile this additional broadening, not observed in PMN, in terms
of structural inhomogeneity in PZN. Based on the strong similarities between
PMN and PZN, we suggest that both materials belong to the same universality
class and discuss the relaxor transition in terms of the three-dimensional
Heisenberg model with cubic anisotropy in a random field.Comment: 11 pages, 10 figures. Updated version after helpful referee comment
Resonant Raman Scattering in Antiferromagnets
Two-magnon Raman scattering provides important information about electronic
correlations in the insulating parent compounds of high- materials. Recent
experiments have shown a strong dependence of the Raman signal in
geometry on the frequency of the incoming photon. We present an analytical and
numerical study of the Raman intensity in the resonant regime. It has been
previously argued by one of us (A.Ch) and D. Frenkel that the most relevant
contribution to the Raman vertex at resonance is given by the triple resonance
diagram. We derive an expression for the Raman intensity in which we
simultaneously include the enhancement due to the triple resonance and a final
state interaction. We compute the two-magnon peak height (TMPH) as a function
of incident frequency and find two maxima at and . We argue that the
high-frequency maximum is cut only by a quasiparticle damping, while the
low-frequency maximum has a finite amplitude even in the absence of damping. We
also obtain an evolution of the Raman profile from an asymmetric form around
to a symmetric form around . We
further show that the TMPH depends on the fermionic quasiparticle damping, the
next-nearest neighbor hopping term and the corrections to the
interaction vertex between light and the fermionic current. We discuss our
results in the context of recent experiments by Blumberg et al. on
and and R\"{u}bhausen et al. on
and show that the triple resonance theory yields a qualitative
and to some extent also quantitative understanding of the experimental data.Comment: 19 pages, RevTeX, 16 figures embedded in the text, ps-file is also
available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm
Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR
We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in
the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the
planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the
region well outside the vortex core, T_1^{-1} cannot be simply explained by the
density of states of the Doppler-shifted quasiparticles in the d-wave
superconductor. Based on T_1^{-1} in the vortex core region, we establish
strong evidence that the local density of states within the vortex core is
strongly reduced.Comment: 5 pages, 3 figure
Resonant two-magnon Raman scattering in parent compounds of high-T superconductors.
We propose a theory of two-magnon Raman scattering from the insulating parent
compounds of high-T superconductors, which contains information not only on
magnetism, but also on the electronic properties in these materials. We use
spin density wave formalism for the Hubbard model, and study diagrammatically
the profile of the two-magnon scattering and its intensity dependence on the
incoming photon frequency both for and in the
resonant regime, in which the energy of the incident photon is close to the gap
between conduction and valence bands. In the nonresonant case, we identify the
diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the
resonant regime, where most of the experiments have been done, we find that the
dominant contribution to Raman intensity comes from a different diagram, one
which allows for a simultaneous vanishing of all three of its denominators
(i.e., a triple resonance). We study this diagram in detail and show that the
triple resonance, combined with the spin-density-wave dispersion relation for
the carriers, explains the unusual features found in the two-magnon profile and
in the two-magnon peak intensity dependence on the incoming photon frequency.
In particular, our theory predicts a maximum of the two-magnon peak intensity
right at the upper edge of the features in the optical data, which has been one
of the key experimental puzzles.Comment: Revtex, 12 postscript figures (uuencoded
Comparison of the Electronic Structures and Energetics of Ferroelectric LiNbO3 and LiTaO3
This paper explains the origin of the ferroelectric instability in LiNbO3 and
LiTaO3 and compares the electronic structures and energetics of the two
materials.Comment: 31 pages, 11 Postscript figure
- …