895 research outputs found
Materials Design using Correlated Oxides: Optical Properties of Vanadium Dioxide
Materials with strong electronic Coulomb interactions play an increasing role
in modern materials applications. "Thermochromic" systems, which exhibit
thermally induced changes in their optical response, provide a particularly
interesting case. The optical switching associated with the metal-insulator
transition of vanadium dioxide (VO2), for example, has been proposed for use in
"intelligent" windows, which selectively filter radiative heat in hot weather
conditions. In this work, we develop the theoretical tools for describing such
a behavior. Using a novel scheme for the calculation of the optical
conductivity of correlated materials, we obtain quantitative agreement with
experiments for both phases of VO2. On the example of an optimized
energy-saving window setup, we further demonstrate that theoretical materials
design has now come into reach, even for the particularly challenging class of
correlated electron systems.Comment: 4+x pages, 2 figure
Investigation of quasi-periodic varaiations in hard X-rays of solar flares
The aim of the present paper is to use quasi-periodic oscillations in hard
X-rays (HXRs) of solar flares as a diagnostic tool for investigation of
impulsive electron acceleration. We have selected a number of flares which
showed quasi-periodic oscillations in hard X-rays and their loop-top sources
could be easily recognized in HXR images. We have considered MHD standing waves
to explain the observed HXR oscillations. We interpret these HXR oscillations
as being due to oscillations of magnetic traps within cusp-like magnetic
structures. This is confirmed by a good correlation between periods of the
oscillations and the sizes of the loop-top sources. We argue that a model of
oscillating magnetic traps is adequate to explain the observations. During the
compressions of a trap particles are accelerated, but during its expansions
plasma, coming from chromospheric evaporation, fills the trap, which explains
the large number of electrons being accelerated during a sequence of strong
impulses. The advantage of our model of oscillating magnetic traps is that it
can explain both the impulses of electron acceleration and quasi-periodicity of
their distribution in time.Comment: 21 pages, 11 figures, 3 tables, submitted to Solar Physic
Electronic correlations in FeGa3 and the effect of hole doping on its magnetic properties
We investigate signatures of electronic correlations in the narrow-gap semiconductor FeGa 3 by means of electrical resistivity and thermodynamic measurements performed on single crystals of FeGa 3 , Fe 1−x Mn x Ga 3 , and FeGa 3−y Zn y , complemented by a study of the 4d analog material RuGa 3 . We find that the inclusion of sizable amounts of Mn and Zn dopants into FeGa 3 does not induce an insulator-to-metal transition. Our study indicates that both substitution of Zn onto the Ga site and replacement of Fe by Mn introduces states into the semiconducting gap that remain localized even at highest doping levels. Most importantly, using neutron powder diffraction measurements, we establish that FeGa 3 orders magnetically above room temperature in a complex structure, which is almost unaffected by the doping with Mn and Zn. Using realistic many-body calculations within the framework of dynamical mean field theory (DMFT), we argue that while the iron atoms in FeGa 3 are dominantly in an S=1 state, there are strong charge and spin fluctuations on short-time scales, which are independent of temperature. Further, the low magnitude of local contributions to the spin susceptibility advocates an itinerant mechanism for the spin response in FeGa 3 . Our joint experimental and theoretical investigations classify FeGa 3 as a correlated band insulator with only small dynamical correlation effects, in which nonlocal exchange interactions are responsible for the spin gap of 0.4 eV and the antiferromagnetic order. We show that hole doping of FeGa 3 leads, within DMFT, to a notable strengthening of many-body renormalizations
Generalized Paraxial Ray Trace Procedure Derived from Geodesic Deviation
Paraxial ray tracing procedures have become widely accepted techniques for
acoustic models in seismology and underwater acoustics. To date a generic form
of these procedures including fluid motion and time dependence has not appeared
in the literature. A detailed investigation of the characteristic curves of the
equations of hydrodynamics allows for an immediate generalization of the
procedure to be extracted from the equation form geodesic deviation. The
general paraxial ray trace equations serve as an ideal supplement to ordinary
ray tracing in predicting the deformation of acoustic beams in random
environments. The general procedure is derived in terms of affine
parameterization and in a coordinate time parameterization ideal for
application to physical acoustic ray propagation. The formalism is applied to
layered media, where the deviation equation reduces to a second order
differential equation for a single field with a general solution in terms of a
depth integral along the ray path. Some features are illustrated through
special cases which lead to exact solutions in terms of either ordinary or
special functions.Comment: Original; 40 pages (double spaced), 1 figure Replaced version; 36
pages single spaced, 7 figures. Expanded content; Complete derivation of the
equations from the equations of hydrodynamics, introduction of an auxiliary
basis for three dimensional wave-front modeling. Typos in text and equations
correcte
Ground state of the spin-1/2 Heisenberg antiferromagnet on an Archimedean 4-6-12 lattice
An investigation of the N\'eel Long Range Order (NLRO) in the ground state of
antiferromagnetic Heisenberg spin system on the two-dimensional, uniform,
bipartite lattice consisting of squares, hexagons and dodecagons is presented.
Basing on the analysis of the order parameter and the long-distance correlation
function the NLRO is shown to occur in this system. Exact diagonalization and
variational (Resonating Valence Bond) methods are applied.Comment: 4 pages, 6 figure
Infrared Properties of Electron Doped Cuprates: Tracking Normal State Gaps and Quantum Critical Behavior in Pr(2-x)Ce(x)CuO(4)
We report the temperature dependence of the infrared-visible conductivity of
Pr(2-x)Ce(x)CuO(4) thin films. When varying the doping from a
non-superconducting film (x = 0.11) to a superconducting overdoped film (x =
0.17), we observe, up to optimal doping (x = 0.15), a partial gap opening. A
model combining a spin density wave gap and a frequency and temperature
dependent self energy reproduces our data reasonably well. The magnitude of
this gap extrapolates to zero for x ~ 0.17 indicating the coexistence of
magnetism and superconductivity in this material and the existence of a quantum
critical point at this Ce concentration.Comment: 5 pages 6 figures include
The Properties of Radio Galaxies and the Effect of Environment in Large Scale Structures at
In this study we investigate 89 radio galaxies that are
spectroscopically-confirmed to be members of five large scale structures in the
redshift range of . Based on a two-stage classification
scheme, the radio galaxies are classified into three sub-classes: active
galactic nucleus (AGN), hybrid, and star-forming galaxy (SFG). We study the
properties of the three radio sub-classes and their global and local
environmental preferences. We find AGN hosts are the most massive population
and exhibit quiescence in their star-formation activity. The SFG population has
a comparable stellar mass to those hosting a radio AGN but are unequivocally
powered by star formation. Hybrids, though selected as an intermediate
population in our classification scheme, were found in almost all analyses to
be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They
are dominated by a high-excitation radio galaxy (HERG) population. We discuss
environmental effects and scenarios for each sub-class. AGN tend to be
preferentially located in locally dense environments and in the cores of
clusters/groups, with these preferences persisting when comparing to galaxies
of similar colour and stellar mass, suggesting that their activity may be
ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit
a strong preference for intermediate-density global environments, suggesting
that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy
interactions and merging.Comment: 28 pages, 10 figures, accepted to MNRA
Linear independence of localized magnon states
At the magnetic saturation field, certain frustrated lattices have a class of
states known as "localized multi-magnon states" as exact ground states. The
number of these states scales exponentially with the number of spins and
hence they have a finite entropy also in the thermodynamic limit
provided they are sufficiently linearly independent. In this article we present
rigorous results concerning the linear dependence or independence of localized
magnon states and investigate special examples. For large classes of spin
lattices including what we called the orthogonal type and the isolated type as
well as the kagom\'{e}, the checkerboard and the star lattice we have proven
linear independence of all localized multi-magnon states. On the other hand the
pyrochlore lattice provides an example of a spin lattice having localized
multi-magnon states with considerable linear dependence.Comment: 23 pages, 6 figure
- …