6 research outputs found
Spin and orbital magnetic moments of isolated single molecule magnets and transition metal clusters
In the present work, magnetic moments of isolated Single Molecule Magnets (SMMs) and transition
metal clusters were investigated. Gas phase Xâray Magnetic Circular Dichroism (XMCD) in
combination with sum rule analysis served to separate the total magnetic moments of the
investigated species into their spin and orbital contributions. Two different mass spectrometry based
setups were used for the presented investigations on transition metal clusters (GAMBITâsetup) and
on single molecule magnets (NanoClusterTrap). Both experiments were coupled to the UE52âPGM
beamline at the BESSY II synchrotron facility (Helmholtz Zentrum Berlin) which provided the
necessary polarized Xâray photons. The investigation of the given compounds as isolated molecules
in the gas phase enabled a determination of their intrinsic magnetic properties void of any influences
of e.g. a surrounding bulk or supporting surfaceIn der vorgelegten Arbeit wurden die magnetischen Momente von isolierten EinzelmolekĂŒlmagneten
(SMMs, Single Molecule Magnets) und von Ăbergangsmetallclustern untersucht. Gasphasen
röntgenstrahlinduzierter magnetischer Zirkulardichroismus (XMCD, Xâray Magnetic Circular
Dichroism) in Kombination mit der sogenannten Summenregelanalyse diente zur Bestimmung der
Anteile der spinâ und bahnmagnetischen Momente zum totalen magnetischen Moment der
untersuchten Substanzen. Zwei unterschiedliche, auf Massenspektrometrie basierende, Instrumente
wurden fĂŒr die genannten Untersuchungen verwendet. Im Falle der Ăbergangsmetallcluster war dies
das GAMBITâSetup und im Falle der EinzelmolekĂŒlmagnete handelte es sich um die NanoClusterTrap.
Beide Instrumente waren an der UE52âPGM Beamline am BESSY II Synchrotron (Helmholtz Zentrum
Berlin) angebracht, welche die benötigte zirkular polarisierte Röntgenstrahlung lieferte. Die
Untersuchungen der genannten Substanzen als isolierte MolekĂŒle in der Gasphase ermöglichte die
Bestimmung ihrer intrinsischer magnetischer Momente ohne den Einfluss etwaiger benachbarter
Festkörperâ oder tragender OberflĂ€chenmolekĂŒle
Spin and orbital magnetic moments of isolated single molecule magnets and transition metal clusters
In the present work, magnetic moments of isolated Single Molecule Magnets (SMMs) and transition
metal clusters were investigated. Gas phase Xâray Magnetic Circular Dichroism (XMCD) in
combination with sum rule analysis served to separate the total magnetic moments of the
investigated species into their spin and orbital contributions. Two different mass spectrometry based
setups were used for the presented investigations on transition metal clusters (GAMBITâsetup) and
on single molecule magnets (NanoClusterTrap). Both experiments were coupled to the UE52âPGM
beamline at the BESSY II synchrotron facility (Helmholtz Zentrum Berlin) which provided the
necessary polarized Xâray photons. The investigation of the given compounds as isolated molecules
in the gas phase enabled a determination of their intrinsic magnetic properties void of any influences
of e.g. a surrounding bulk or supporting surfaceIn der vorgelegten Arbeit wurden die magnetischen Momente von isolierten EinzelmolekĂŒlmagneten
(SMMs, Single Molecule Magnets) und von Ăbergangsmetallclustern untersucht. Gasphasen
röntgenstrahlinduzierter magnetischer Zirkulardichroismus (XMCD, Xâray Magnetic Circular
Dichroism) in Kombination mit der sogenannten Summenregelanalyse diente zur Bestimmung der
Anteile der spinâ und bahnmagnetischen Momente zum totalen magnetischen Moment der
untersuchten Substanzen. Zwei unterschiedliche, auf Massenspektrometrie basierende, Instrumente
wurden fĂŒr die genannten Untersuchungen verwendet. Im Falle der Ăbergangsmetallcluster war dies
das GAMBITâSetup und im Falle der EinzelmolekĂŒlmagnete handelte es sich um die NanoClusterTrap.
Beide Instrumente waren an der UE52âPGM Beamline am BESSY II Synchrotron (Helmholtz Zentrum
Berlin) angebracht, welche die benötigte zirkular polarisierte Röntgenstrahlung lieferte. Die
Untersuchungen der genannten Substanzen als isolierte MolekĂŒle in der Gasphase ermöglichte die
Bestimmung ihrer intrinsischer magnetischer Momente ohne den Einfluss etwaiger benachbarter
Festkörperâ oder tragender OberflĂ€chenmolekĂŒle
Inverse H/D Isotope Effects in Benzene Activation by Cationic and Anionic Cobalt Clusters
Reactions under single collision conditions with benzene
C<sub>6</sub>H<sub>6</sub> and with benzene-<i>d</i><sub>6</sub> C<sub>6</sub>D<sub>6</sub> of size selected cationic cobalt
clusters Co<sub><i>n</i></sub><sup>+</sup> and of anionic
cobalt clusters Co<sub><i>n</i></sub><sup>â</sup> in the cluster size range <i>n</i> = 3â28 revealed
that dehydrogenation by cationic clusters is sparse, whereas it is
ubiquitous in reactions by anionic clusters. Kinetic isotope effects
(KIE) in total reaction rates are inverse and, in part, large. Dehydrogenation
isotope effects (DIE) are normal. A multistep model of adsorption
and stepwise dehydrogenation from the precursor adsorbate unravels
a possible origin of the inverse KIE: Single step CâH bond
activation is swift (no KIE in forward direction) and largely reversible
(normal KIE backward) whereas H/D tunneling is likely to contribute
(backward). DFT calculations of the structures and energetics along
the reaction path in [Co<sub>13</sub>C<sub>6</sub>H<sub>6</sub>]<sup>+</sup> lend support to the proposed multistep model. The observed
effects on rates and KIEs of cluster charges and of cluster sizes
are noted to elucidate further
The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters
We present size dependent spin and orbital magnetic moments of cobalt (Co, 8 †n †22), iron (Fe, 7 †n †17), and nickel cluster (Ni, 7 †n †17) cations as obtained by X-ray magnetic circular dichroism (XMCD) spectroscopy of isolated clusters in the gas phase. The spin and orbital magnetic moments range between the corresponding atomic and bulk values in all three cases. We compare our findings to previous XMCD data, Stern-Gerlach data, and computational results. We discuss the application of scaling laws to the size dependent evolution of the spin and orbital magnetic moments per atom in the clusters. We find a spin scaling law âper cluster diameter,â ~n, that interpolates between known atomic and bulk values. In remarkable contrast, the orbital moments do likewise only if the atomic asymptote is exempt. A concept of âprimaryâ and âsecondaryâ (induced) orbital moments is invoked for interpretation