124 research outputs found

    Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance

    Get PDF
    The adsorption of different organic acids and their influence on the pH-dependent charging, salt tolerance and so the colloidal stability of magnetite nanoparticles are compared. Adsorption isotherms of citric acid - CA, gallic acid - GA, poly(acrylic acid) - PAA, poly(acrylic-co-maleic acid) - PAM and humic acid - HA were measured. The pH-dependent charge state of MNPs was characterized by electrophoretic mobility and their aggregation by dynamic light scattering. The salt tolerance was tested in coagulation kinetic experiments. Although the adsorption capacities, the type of bonding (either H-bonds or metal ion-carboxylate complexes) and so the bond strengths are significantly different, the following general trends have been found. Small amount of organic acids at pH. <. ~8 (the pH of PZC of magnetite) - relevant condition in natural waters - only neutralize. s the positive charges, and so promotes the aggregation and sedimentation of nanoparticles. Greater amounts of organic acid, above the charge neutralization, cause the sign reversal of particle charge, and at high overcharging promote stabilization and dispersing. The thicker layer of PAA, PAM and HA provides better electrosteric stability than CA and GA. GA undergoes surface polymerization, thereby improving stabilization. The organic acids studied here eliminate completely the pH sensitivity of amphoteric magnetite, but only the polyanionic coverage provides significant increase in resistance against coagulating effects of salts at neutral pH commonly prevailing in natural waters

    Irreversible Aging Dynamics and Generic Phase Behavior of Aqueous Suspensions of Laponite

    Full text link
    In this work we study the aging behavior of aqueous suspension of Laponite having 2.8 weight % concentration using rheological tools. At various salt concentration all the samples demonstrate orientational order when observed using crossed polarizers. In rheological experiments we observe inherent irreversibility in the aging dynamics which forces the system not to rejuvenate to the same state in the shear melting experiment carried out at a later date since preparation. The extensive rheological experiments carried out as a function of time elapsed since preparation demonstrate the self similar trend in the aging behavior irrespective of the concentration of salt. We observe that the exploration of the low energy states as a function of aging time is only kinetically affected by the presence of salt. We estimate that the energy barrier to attain the low energy states decreases linearly with increase in the concentration of salt. The observed superposition of all the elapsed time and the salt concentration dependent data suggests that the aging that occurs in low salt concentration systems over a very long period is qualitatively similar to the aging behavior observed in systems with high salt concentration over a shorter period.Comment: 27 pages, 8 figures. Langmuir, in pres

    Whither Magnetic Hyperthermia? A Tentative Roadmap

    Get PDF
    The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia

    Designed polyelectrolyte shell on magnetite nanocore for dilution-resistant biocompatible magnetic fluids.

    Get PDF
    Magnetite nanoparticles (MNPs) coated with poly(acrylic acid-co-maleic acid) polyelectrolyte (PAM) have been prepared with the aim of improving colloidal stability of core-shell nanoparticles for biomedical applications and enhancing the durability of the coating shells. FTIR-ATR measurements reveal two types of interaction of PAM with MNPs: hydrogen bonding and inner-sphere metal-carboxylate complex formation. The mechanism of the latter is ligand exchange between uncharged -OH groups of the surface and -COO(-) anionic moieties of the polyelectrolyte as revealed by adsorption and electrokinetic experiments. The aqueous dispersion of PAM@MNP particles (magnetic fluids - MFs) tolerates physiological salt concentration at composition corresponding to the plateau of the high-affinity adsorption isotherm. The plateau is reached at small amount of added PAM and at low concentration of nonadsorbed PAM, making PAM highly efficient for coating MNPs. The adsorbed PAM layer is not desorbed during dilution. The performance of the PAM shell is superior to that of poly(acrylic acid) (PAA), often used in biocompatible MFs. This is explained by the different adsorption mechanisms; metal-carboxylate cannot form in the case of PAA. Molecular-level understanding of the protective shell formation on MNPs presented here improves fundamentally the colloidal techniques used in core-shell nanoparticle production for nanotechnology applications
    corecore