17 research outputs found

    Stem cell therapy for degenerative disc disease: Bridging the gap between preclinical promise and clinical potential

    Get PDF
    Stem cell therapy has gained attention in the field of regenerative medicine due to its potential to restore damaged tissue. This article focuses on the application of stem cell therapy for treating spinal pathologies, particularly intervertebral disc degeneration. Disc degeneration is a major cause of low back pain and is characterized by changes in the matrix and inflammation. Animal studies have demonstrated that the implantation of mesenchymal stem cells (MSCs) yields promising results, including increased disc height, improved hydration, and reduced inflammation. However, the number of clinical trials remains limited, necessitating further research to optimize MSCs therapy. Although preclinical studies offer valuable insights, caution is needed when extrapolating these findings to clinical practice. Stem cell therapy still faces multiple challenges, such as the durability and survival of MSCs upon implantation, uncertain pathways to discogenic differentiation, and the adverse impact of a harsh microenvironment on cell survival. The avascular nature of the intervertebral disc and dynamic loading conditions also affect the adaptation of transplanted cells. Despite these obstacles, stem cell therapy holds promise as a potential treatment for disc degeneration, and ongoing research aims to fill the current gap in conclusive data

    Soft tissue grafts for dural reconstruction after meningioma surgery

    Get PDF
    The meninges are involved in various pathologies and are often directly or indirectly severed during surgical procedures, especially the dura mater. This can pose a real challenge for the surgeon, as a proper reconstruction of the meninges is important to prevent complications such as cerebrospinal fluid leak (CSF). A variety of techniques for dural reconstruction have been described, employing natural and artificial materials. A novel technique for dural reconstruction involves soft tissue grafts in the form of fibrous or fibromuscular flaps, which are placed on the dural defects to seal the gaps. These soft tissue grafts represent an appropriate scaffold for cell ingrowth and fibrosis, thus preventing CSF. In this pilot study, we described the application of soft tissue grafts for dural reconstruction in 10 patients who underwent convexity meningioma surgery

    Hypophyseal metastases: A report of three cases and literature review

    Get PDF
    Metastatic tumours to the pituitary gland are rare. The most frequent are metastases from breast and lung. We describe three patients with metastatic tumours: (I) a 54-year-old patient with metastatic renal clear-cell carcinoma and consequent disturbances in visual acuity, cranial nerve paresis and panhypopituitarism, (II) a 60-year-old patient with a diffuse large B-cell lymphoma with panhypopituitarism and diabetes insipidus and (III) a 57-year-old patient with metastasis of breast cancer and panhypopituitarism, visual impairment and cranial nerve paresis. A transnasal endoscopic biopsy and resection of the tumour was performed in all patients, followed by the oncological treatment. Despite the rarity of the disease, it is important to suspect a metastatic pituitary tumour especially in the case of diabetes insipidus, ophthalmoplegia, rapid course of the disease and headaches. In 20–30% of patients, a metastasis to the pituitary is the first manifestation of a tumour of unknown origin. Surgical and adjuvant therapy may improve the quality of life. The survival is not affected, however, and the prognosis of the disease is usually poor

    Feasibility and accuracy of a voxel-based neuronavigation system with 3D image rendering in preoperative planning and as a learning tool for young neurosurgeons, exemplified by the anatomical localization of the superior sagittal sinus

    Get PDF
    It is essential for a neurosurgeon to know individual anatomy and the corresponding anatomical landmarks before starting a surgery. Continuous training, especially of young neurosurgeons, is crucial for understanding complex neuroanatomy. In this study, we used a neuronavigation system with 3D volumetric image rendering to determine the anatomical relationship between the sagittal suture and the superior sagittal sinus (SSS) in patients with intracranial lesions. Furthermore, we discussed the applicability of such system in preoperative planning, residency training, and research. The study included 30 adult patients (18 female/12 male) who underwent a cranial computed tomography (CT) scan combined with venous angiography, for preoperative planning. The position of the sagittal suture in relation to the SSS was assessed in 3D CT images using an image guidance system (IGS) with 3D volumetric image rendering. Measurements were performed along the course of the sagittal sinus at the bregma, lambda, and in the middle between these two points. The SSS deviated to the right side of the sagittal suture in 50% of cases at the bregma, and in 46.7% at the midpoint and lambda. The SSS was displaced to the left of the sagittal suture in 10% of cases at the bregma and lambda and in 13% at the midpoint. IGSs with 3D volumetric image rendering enable simultaneous visualization of bony surfaces, soft tissue and vascular structures and interactive modulation of tissue transparency. They can be used in preoperative planning and intraoperative guidance to validate external landmarks and to determine anatomical relationships. In addition, 3D IGSs can be utilized for training of surgical residents and for research in anatomy

    Non-endoscopic minimally invasive evacuation of intracerebral hematoma (ICH): A case report

    No full text
    Spontaneous intracerebral hemorrhage (ICH) is one of the most serious causes of stroke, leading to high rates of disability and mortality. In addition to intensive medical treatment, surgery may help to improve the prognosis in patients with ICH. A rapid reversal of coagulopathy is essential in these patients, although it may be difficult to achieve in various bleeding disorders. In such cases, when surgery is needed, a minimally invasive approach is recommended. In this case report, we described and shortly discussed the evacuation of ICH with a minimally invasive non-endoscopic surgical technique

    A Review Pertaining to SARS-CoV-2 and Autoimmune Diseases: What Is the Connection?

    No full text
    Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It is known that infection with SARS-CoV-2 can lead to various autoimmune and autoinflammatory diseases. There are few reports in the literature on the association between SARS-CoV-2 and autoimmune diseases, and the number of reports has been increasing since 2020. Autoimmune diseases and SARS-CoV-2 infections are intertwined in several ways. Both conditions lead to immune-mediated tissue damage, the immune response is accompanied by the increased secretion of inflammatory cytokines and both conditions can be treated using immunomodulatory drugs. Patients with certain autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, cardiac sarcoidosis, idiopathic pulmonary fibrosis, autoimmune hepatitis, multiple sclerosis and others, are more susceptible to SARS-CoV-2 infection, either because of the active autoimmune disease or because of the medications used to treat it. Conversely, SARS-CoV-2 infection can also cause certain autoimmune diseases. In this paper, we describe the development of autoimmune diseases after COVID-19 and the recovery from COVID-19 in people with autoimmune diseases

    Isolated Sagittal Craniosynostosis: A Comprehensive Review

    No full text
    Sagittal craniosynostosis, a rare but fascinating craniofacial anomaly, presents a unique challenge for both diagnosis and treatment. This condition involves premature fusion of the sagittal suture, which alters the normal growth pattern of the skull and can affect neurological development. Sagittal craniosynostosis is characterised by a pronounced head shape, often referred to as scaphocephaly. Asymmetry of the face and head, protrusion of the fontanel, and increased intracranial pressure are common clinical manifestations. Early recognition of these features is crucial for early intervention, and understanding the aetiology is, therefore, essential. Although the exact cause remains unclear, genetic factors are thought to play an important role. Mutations in genes such as FGFR2 and FGFR3, which disrupt the normal development of the skull, are suspected. Environmental factors and various insults during pregnancy can also contribute to the occurrence of the disease. An accurate diagnosis is crucial for treatment. Imaging studies such as ultrasound, computed tomography, magnetic resonance imaging, and three-dimensional reconstructions play a crucial role in visualising the prematurely fused sagittal suture. Clinicians also rely on a physical examination and medical history to confirm the diagnosis. Early detection allows for quick intervention and better treatment outcomes. The treatment of sagittal craniosynostosis requires a multidisciplinary approach that includes neurosurgery, craniofacial surgery, and paediatric care. Traditional treatment consists of an open reconstruction of the cranial vault, where the fused suture is surgically released to allow normal growth of the skull. However, advances in minimally invasive techniques, such as endoscopic strip craniectomy, are becoming increasingly popular due to their lower morbidity and shorter recovery times. This review aims to provide a comprehensive overview of sagittal craniosynostosis, highlighting the aetiology, clinical presentation, diagnostic methods, and current treatment options

    Craniosynostosis - Recognition, clinical characteristics, and treatment

    No full text
    Craniosynostosis is a developmental craniofacial anomaly, resulting in impairment of brain development and abnormally shaped skull. The main cause of craniosynostosis is premature closure of one or more cranial sutures. It usually occurs as an isolated condition, but may also be associated with other malformations as part of complex syndromes. When left untreated, craniosynostosis can cause serious complications, such as developmental delay, facial abnormality, sensory, respiratory and neurological dysfunction, anomalies affecting the eye, and psychological disturbances. Thus, early diagnosis, expert surgical techniques, postoperative care, and adequate follow-up are of vital importance in treating craniosynostosis

    Clinical Applications of Poly-Methyl-Methacrylate in Neurosurgery: The In Vivo Cranial Bone Reconstruction

    No full text
    Background: Biomaterials and biotechnology are becoming increasingly important fields in modern medicine. For cranial bone defects of various aetiologies, artificial materials, such as poly-methyl-methacrylate, are often used. We report our clinical experience with poly-methyl-methacrylate for a novel in vivo bone defect closure and artificial bone flap development in various neurosurgical operations. Methods: The experimental study included 12 patients at a single centre in 2018. They presented with cranial bone defects after various neurosurgical procedures, including tumour, traumatic brain injury and vascular pathologies. The patients underwent an in vivo bone reconstruction from poly-methyl-methacrylate, which was performed immediately after the tumour removal in the tumour group, whereas the trauma and vascular patients required a second surgery for cranial bone reconstruction due to the bone decompression. The artificial bone flap was modelled in vivo just before the skin closure. Clinical and surgical data were reviewed. Results: All patients had significant bony destruction or unusable bone flap. The tumour group included five patients with meningiomas destruction and the trauma group comprised four patients, all with severe traumatic brain injury. In the vascular group, there were three patients. The average modelling time for the artificial flap modelling was approximately 10 min. The convenient location of the bone defect enabled a relatively straightforward and fast reconstruction procedure. No deformations of flaps or other complications were encountered, except in one patient, who suffered a postoperative infection. Conclusions: Poly-methyl-methacrylate can be used as a suitable material to deliver good cranioplasty cosmesis. It offers an optimal dural covering and brain protection and allows fast intraoperative reconstruction with excellent cosmetic effect during the one-stage procedure. The observations of our study support the use of poly-methyl-methacrylate for the ad hoc reconstruction of cranial bone defects
    corecore