145 research outputs found

    Global integrability of cosmological scalar fields

    Full text link
    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with chaos present in such cosmological models, and the issues of integrability restricted to the real domain.Comment: This is a conflated version of arXiv:gr-qc/0612087 and arXiv:gr-qc/0703031 with a new theory sectio

    Non-integrability of density perturbations in the FRW universe

    Full text link
    We investigate the evolution equation of linear density perturbations in the Friedmann-Robertson-Walker universe with matter, radiation and the cosmological constant. The concept of solvability by quadratures is defined and used to prove that there are no "closed form" solutions except for the known Chernin, Heath, Meszaros and simple degenerate ones. The analysis is performed applying Kovacic's algorithm. The possibility of the existence of other, more general solutions involving special functions is also investigated.Comment: 13 pages. The latest version with added references, and a relevant new paragraph in section I
    • …
    corecore