8 research outputs found

    Modeling of phytoextraction efficiency of microbially stimulated <i>Salix dasyclados</i> L. in the soils with different speciation of heavy metals

    No full text
    <p>Bioaugmentation of soils with selected microorganisms during phytoextraction can be the key solution for successful bioremediation and should be accurately calculated for different physicochemical soil properties and heavy metal availability to guarantee the universality of this method. Equally important is the development of an accurate prediction tool to manage phytoremediation process. The main objective of this study was to evaluate the role of three metallotolerant siderophore-producing <i>Streptomyces</i> sp. B1鈥揃3 strains in the phytoremediation of heavy metals with the use of <i>S. dasyclados</i> L. growing in four metalliferrous soils as well as modeling the efficiency of this process based on physicochemical and microbiological properties of the soils using artificial neural network (ANN) analysis. The bacterial inoculation of plants significantly stimulated plant biomass and reduced oxidative stress. Moreover, the bacteria affected the speciation of heavy metals and finally their mobility, thereby enhancing the uptake and bioaccumulation of Zn, Cd, and Pb in the biomass. The best capacity for phytoextraction was noted for strain B1, which had the highest siderophore secretion ability. Finally, ANN model permitted to predict efficiency of phytoextraction based on both the physicochemical properties of the soils and the activity of the soil microbiota with high precision.</p

    The effect of wool hydrolysates on squamous cell carcinoma cells <i>in vitro</i>. Possible implications for cancer treatment

    No full text
    <div><p>Squamous cell carcinoma of the skin is the second most common cutaneous malignancy. Despite various available treatment methods and advances in noninvasive diagnostic techniques, the incidence of metastatic cutaneous squamous cell carcinoma is rising. Deficiency in effective preventive or treatment methods of transformed keratinocytes leads to necessity of searching for new anticancer agents. The present study aims to evaluate the possibility of using wool hydrolysates as such agents. Commercially available compounds such as 5-fluorouracil, ingenol mebutate, diclofenac sodium salt were also used in this study. The process of wool degradation was based on chemical pre-activation and enzymatic digestion of wool. The effect of mentioned compounds on cell viability of squamous carcinoma cell line and healthy keratinocytes was evaluated. The obtained data show a significantly stronger effect of selected wool hydrolysates compared to commercial compounds (p<0.05) on viability of cells. The wool hydrolysates decreased squamous cell carcinoma cells viability by up to 67% comparing to untreated cells. These results indicate bioactive properties of wool hydrolysates, which affect the viability of squamous carcinoma cells and decrease their number. We hypothesize that these agents may be used topically for treatment of transformed keratinocytes in actinic keratosis and invasive squamous skin cancer in humans.</p></div

    The effect of 5-fluorouracil on cell viability of three cell lines after 24h of incubation.

    No full text
    <p>The results are presented as box plots. Asterisks indicate the significance of difference. However one has to notice that due to the testing of differences between all variants, different star colors were used. The variants differ significantly only if the asterisk color is various. Black asterisk means that selected variant differs with all the others. In contrast, the same color indicates that difference is statistically irrelevant. Moreover, number of asterisks (*; ** or ***) refers to p < 0.05; p < 0.01 and p < 0.005, respectively.</p

    The effect of MR4 hydrolysate on cell viability of three cell lines after 24h of incubation.

    No full text
    <p>The results are presented as box plots. Asterisks indicate the significance of difference. However one has to notice that due to the testing of differences between all variants, different star colors were used. The variants differ significantly only if the asterisk color is various. Black asterisk means that selected variant differs with all the others. In contrast, the same color indicates that difference is statistically irrelevant. Moreover, number of asterisks (*; ** or ***) refers to p < 0.05; p < 0.01 and p < 0.005, respectively.</p

    The effect of MR2 hydrolysate on cell viability of three cell lines after 24h of incubation.

    No full text
    <p>The results are presented as box plots. Asterisks indicate the significance of difference. However one has to notice that due to the testing of differences between all variants, different star colors were used. The variants differ significantly only if the asterisk color is various. Black asterisk means that selected variant differs with all the others. In contrast, the same color indicates that difference is statistically irrelevant. Moreover, number of asterisks (*; ** or ***) refers to p < 0.05; p < 0.01 and p < 0.005, respectively.</p

    Comparison of the effect of selected compounds on cell viability of three cell lines in the middle concentrations (for MR4 0.5% and 50 渭M for the commercial compounds).

    No full text
    <p>The results were expressed as a percentage of the viability of treated cells to untreated ones. The results are presented as box plots. Asterisks indicate the significance of difference. However one has to notice that due to the testing of differences between all variants, different star colors were used. The variants differ significantly only if the asterisk color is various. Black asterisk means that selected variant differs with all the others. In contrast, the same color indicates that difference is statistically irrelevant. Moreover, number of asterisks (*; ** or ***) refers to p < 0.05; p < 0.01 and p < 0.005, respectively.</p
    corecore