3 research outputs found

    Methylene Blue—Current Knowledge, Fluorescent Properties, and Its Future Use

    No full text
    Methylene blue is a fluorescent dye discovered in 1876 and has since been used in different scientific fields. Only recently has methylene blue been used for intraoperative fluorescent imaging. Here, the authors review the emerging role of methylene blue, not only as a dye used in clinical practice, but also as a fluorophore in a surgical setting. We discuss the promising potential of methylene blue together with the challenges and limitations among specific surgical techniques. A literature review of PubMed and Medline was conducted based on the historical, current and future usage of methylene blue within the field of medicine. We reviewed not only the current usage of methylene blue, but we also tried to grasp its’ function as a fluorophore in five main domains. These domains include the near-infrared imaging visualization of ureters, parathyroid gland identification, pancreatic tumors imaging, detection of breast cancer tumor margins, as well as breast cancer sentinel node biopsy. Methylene blue is used in countless clinical procedures with a relatively low risk for patients. Usage of its fluorescent properties is still at an early stage and more pre-clinical, as well as clinical research, must be performed to fully understand its potentials and limitations

    Multispectral imaging using fluorescent properties of indocyanine green and methylene blue in colorectal surgery - initial experience

    No full text
    Introduction: Image-guided surgery is becoming a new tool in colorectal surgery. Intraoperative visualisation of different structures using fluorophores helps during various steps of operations. In our report, we used two fluorophores—indocyanine green (ICG), and methylene blue (MB)—during different steps of colorectal surgery, using one camera system for two separate near-infrared wavelengths. Material and methods: Twelve patients who underwent complex open or laparoscopic colorectal surgeries were enrolled. Intravenous injections of MB and ICG at different time points were administered. Visualisation of intraoperative ureter position and fluorescent angiography for optimal anastomosis was performed. A retrospective analysis of patients treated in our departments during 2020 was performed, and data about ureter injury and anastomotic site complications were collected. Results: Intraoperative localisation of ureters with MB under fluorescent light was possible in 11 patients. The mean signal-to-background ratio was 1.58 ± 0.71. Fluorescent angiography before performing anastomosis using ICG was successful in all 12 patients, and none required a change in position of the planned colon resection for anastomosis. The median signal-to-background ratios was 1.25 (IQR: 1.22–1.89). Across both centres, iatrogenic injury of the ureter was found in 0.4% of cases, and complications associated with anastomosis was found in 5.5% of cases. Conclusions: Our study showed a substantial opportunity for using two different fluorophores in colorectal surgery, whereby the visualisation of one will not change the possible quantification analysis of the other. Using two separate dyes during one procedure may help in optimisation of the fluorescent properties of both dyes when using them for different applications. Visualisation of different structures by different fluorophores seems to be the future of image-guided surgery, and shows progress in optical technologies used in image-guided surgery

    Methylene Blue Near-Infrared Fluorescence Imaging in Breast Cancer Sentinel Node Biopsy

    No full text
    Introduction: Fluorescence-based navigation for breast cancer sentinel node biopsy is a novel method that uses indocyanine green as a fluorophore. However, methylene blue (MB) also has some fluorescent properties. This study is the first in a clinical series presenting the possible use of MB as a fluorescent dye for the identification of sentinel nodes in breast sentinel node biopsy. Material and methods: Forty-nine patients with breast cancer who underwent sentinel node biopsy procedures were enrolled in the study. All patients underwent standard simultaneous injection of nanocolloid and MB. We visualized and assessed the sentinel nodes and the lymphatic channels transcutaneously, with and without fluorescence, and calculated the signal-to-background ratio (SBR). We also analyzed the corresponding fluorescence intensity of various dilutions of MB. Results: In twenty-three patients (46.9%), the location of the sentinel node, or the end of the lymphatic path, was visible transcutaneously. The median SBR for transcutaneous sentinel node location was 1.69 (range 1.66–4.35). Lymphatic channels were visible under fluorescence in 14 patients (28.6%) prior to visualization by the naked eye, with an average SBR of 2.01 (range 1.14–5.6). The sentinel node was visible under fluorescence in 25 patients (51%). The median SBR for sentinel node visualization with MB fluorescence was 2.54 (range 1.34–6.86). Sentinel nodes were visualized faster under fluorescence during sentinel node preparation. Factors associated with the rate of visualization included diabetes (p = 0.001), neoadjuvant chemotherapy (p = 0.003), and multifocality (p = 0.004). The best fluorescence was obtained using 40 μM (0.0128 mg/mL) MB, but we also observed a clinically relevant dilution range between 20 μM (0.0064 mg/mL) and 100 μM (0.032 mg/mL). Conclusions: For the first time, we propose the clinical usage of MB as a fluorophore for fluorescence-guided sentinel node biopsy in breast cancer patients. The quenching effect of the dye may be the reason for its poor detection rate. Our analysis of different concentrations of MB suggests a need for a detailed clinical analysis to highlight the practical usefulness of the dye
    corecore