29 research outputs found

    Microbiome Associated with Slovak Traditional Ewe's Milk Lump Cheese

    Get PDF
    Worldwide consumers increasingly demand traditional/local products, to which those made from ewe's milk belong. In Slovakia, dairy products made from ewe's milk have a long tradition. A total of seventeen farmhouse fresh ewe's milk lump cheeses from various local farm producers in central Slovakia were sampled at farms and then analyzed. Based on the sequencing data analysis, the phylum Firmicutes dominated (60.92%) in ewe's lump cheeses, followed with the phylum Proteobacteria (38.23%), Actinobacteria (0.38%) and Bacteroidetes (0.35%). The phylum Firmicutes was represented by six genera, among which the highest amount possessed the genus Streptococcus (41.13%) followed with the genus Lactococcus (8.54%), Fructobacillus (3.91%), Enterococcus (3.18%), Staphylococcus (1.80%) and the genus Brochotrix (0.08%). The phylum Proteobacteria in ewe's lump cheeses involved eight Gram-negative genera: Pseudomonas, Acinetobacter, Enterobacter, Ewingella, Escherichia-Shigella, Pantoea and Moraxella. The phylum Bacteroidetes involved three genera: Bacteroides, Sphingobacterium and Chrysobacterium. Results presented are original; the microbiome of Slovak ewe's milk lump cheese has been not analyzed at those taxonomic levels up to now

    Double rolling circle replication (DRCR) is recombinogenic

    Get PDF
    Homologous recombination plays a critical role in maintaining genetic diversity as well as genome stability. Interesting examples implying hyper-recombination are found in nature. In chloroplast DNA (cpDNA) and the herpes simplex virus 1 (HSV-1) genome, DNA sequences flanked by inverted repeats undergo inversion very frequently, suggesting hyper-recombinational events. However, mechanisms responsible for these events remain unknown. We previously observed very frequent inversion in a designed amplification system based on double rolling circle replication (DRCR). Here, utilizing the yeast 2-Ī¼m plasmid and an amplification system, we show that DRCR is closely related to hyper-recombinational events. Inverted repeats or direct repeats inserted into these systems frequently caused inversion or deletion/duplication, respectively, in a DRCR-dependent manner. Based on these observations, we suggest that DRCR might be also involved in naturally occurring chromosome rearrangement associated with gene amplification and the replication of cpDNA and HSV genomes. We propose a model in which DRCR markedly stimulates homologous recombination

    A Screen for Nigericin-Resistant Yeast Mutants Revealed Genes Controlling Mitochondrial Volume and Mitochondrial Cation Homeostasis

    No full text
    Little is known about the regulation of ion transport across the inner mitochondrial membrane in Saccharomyces cerevisiae. To approach this problem, we devised a screening procedure for facilitating the identification of proteins involved in mitochondrial ion homeostasis. Taking advantage of the growth inhibition of yeast cells by electroneutral K(+)/H(+) ionophore nigericin, we screened for genetic mutations that would render cells tolerant to this drug when grown on a nonfermentable carbon source and identified several candidate genes including MDM31, MDM32, NDI1, YMR088C (VBA1), CSR2, RSA1, YLR024C, and YNL136W (EAF7). Direct examination of intact cells by electron microscopy indicated that mutants lacking MDM31 and/or MDM32 genes contain dramatically enlarged, spherical mitochondria and that these morphological abnormalities can be alleviated by nigericin. Mitochondria isolated from the Ī”mdm31 and Ī”mdm32 mutants exhibited limited swelling in an isotonic solution of potassium acetate even in the presence of an exogenous K(+)/H(+) antiport. In addition, growth of the mutants was inhibited on ethanol-containing media in the presence of high concentrations of salts (KCl, NaCl, or MgSO(4)) and their mitochondria exhibited two- (Ī”mdm31 and Ī”mdm32) to threefold (Ī”mdm31Ī”mdm32) elevation in magnesium content. Taken together, these data indicate that Mdm31p and Mdm32p control mitochondrial morphology through regulation of mitochondrial cation homeostasis and the maintenance of proper matrix osmolarity

    Design and modelling of a 2x2 optical switch

    No full text
    The paper deals with designing and numerical modelling a 2 x 2 optical switch for photonic integrated circuits based on 2 x 2 MMI elements and phase modulators. The 2 x 2 optical switch was modelled in the RsoftCAD with the simulation tool BeamPROP. The 2 x 2 optical switch is a common element for creating more complex 1 x N or N x N optical switches in all-optical signal processing

    Optimization of 2x2 optical switch based on MMI splitters by using waveguide tapers

    No full text
    The paper deals with the optimization of 2x2 optical switch for photonic integrated circuits based on two 2x2 MMI splitters and two phase-modulators. The optical switch was modelled in the RSoftCAD with the simulation tool BeamPROP. The optimization was done to minimise the insertion losses and broaden the spectral band at 1550 nm by using linear tapers in a 2x2 MMI splitter topology. The 2x2 optical switch is a common element for creating more complex 1xN or NxN optical switches in all-optical signal processing

    Temperature stability investigation of fiber array to photonics chip butt coupling

    No full text
    The main aims of this work are the validation of the developed process of gluing a single-mode optical fiber array with a photonic chip and the selection of a more suitable adhesive from the two adhesives being compared. An active alignment system was used for adjusting the two optical fiber arrays to a photonics chip. The gluing was done by two compared UV curable adhesives applied in the optical path. The insertion losses of glued coupling were measured and investigated at two discrete wavelengths 1310ā€…nm and 1550ā€…nm during temperature testing in the climatic chamber according to Telcordia GR_1209_Corei04 [3]. The measurement, investigation, and comparison of insertion losses of the glued coupling at the spectral band from 1530ā€…nm to 1570ā€…nm were done immediately after gluing process and after three temperature cycles in the climatic chamber with one month delay

    Temperature stability of fiber array to photonics chip butt coupling

    No full text
    A Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. Progress in integrated photonics enables development of photonic chips with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic chips is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications. One important step of packaging is effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic chip optical waveguide with submicron dimensions. For complex photonic chips, it is necessary to couple not one optical fiber but several optical fibers, which are arranged in fiber arrays. In this case, it is necessary to use a 6D positioning system, which allows to optimally adjust the relative position of the photonic chip and the fiber arrays. After setting the optimal relative position of the photonic chip and the fiber array, the process of their fixation follows. One possibility of fixation is gluing with an adhesive in the optical path between the photonic chip and an array of optical fibers with a refractive index close to the refractive index of the optical fiber core. This paper is focused on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths fixed themselves by UV adhesive in the optical path. The main aims of this works are selection of better adhesive from two types for gluing of photonic chip and fiber array in packaging process of photonics chips and validation of gluing process developing. The coupling and alignment of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 Ā°C to 80 Ā°C in climatic chamber according to Telcordia. Spectral dependence of insertion losses were measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature. This work was supported by the Slovak Research and Development Agency under the contracts APVV-17-0662 and SK-AT-20-0017 and by the COST Action ā€œEuropean Network for High Performance Integrated Microwave Photonicsā€ (EUIMWP) CA16220

    Concept of PIC packaging with microwave, DC and fiber array ports

    No full text
    Progress in integrated photonics enables development of integrated photonics circuits with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic integrated circuits is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications. Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. The effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic integrated circuits optical waveguides with submicron dimensions are necessary. To address these challenges, we present our concept of photonics integrated circuit packaging with radio frequency, direct current and fiber array ports with automated active alignment system

    Temperature characterization of fiber array to photonics chip coupling

    No full text
    In this paper we report on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths. The alignment and gluing of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by UV curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 Ā°C to 80 Ā°C in climatic chamber. Spectral dependence of insertion losses was measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature
    corecore