221 research outputs found

    The ossification of the metacarpal and phalangeal bones in human foetuses

    Get PDF
    An evaluation was made of the ossification level of the metacarpal and phalangeal bones in human foetuses of both sexes from the 4th to the 9th month of gestation. Our results indicate that ossification of phalangeal bones 1 to 5 always started at the distal end of the phalanx and endochondral ossification prevailed in the proximal phalanx of the thumb

    Correspondence between HBT radii and the emission zone in non-central heavy ion collisions

    Full text link
    In non-central collisions between ultra-relativistic heavy ions, the freeze-out distribution is anisotropic, and its major longitudinal axis may be tilted away from the beam direction. The shape and orientation of this distribution are particularly interesting, as they provide a snapshot of the evolving source and reflect the space-time aspect of anisotropic flow. Experimentally, this information is extracted by measuring pion HBT radii as a function of angle with respect to the reaction plane. Existing formulae relating the oscillations of the radii and the freezeout anisotropy are in principle only valid for Gaussian sources with no collective flow. With a realistic transport model of the collision, which generates flow and non-Gaussian sources, we find that these formulae approximately reflect the anisotropy of the freezeout distribution.Comment: 9 pages, 8 figure

    Graphene Oxidation: Thickness Dependent Etching and Strong Chemical Doping

    Full text link
    Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of ~0.5 eV. These oxygen species partially desorb in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O2 atmosphere at room temperature. This strongly doped graphene is very different than graphene oxide made by mineral acid attack.Comment: 15 pages, 5 figure

    Prospective Evaluation of Amplification-Boosted ELISA for Heat-Denatured p24 Antigen for Diagnosis and Monitoring of Pediatric Human Immunodeficiency Virus Type 1 Infection

    Get PDF
    The performance in pediatrie human immunodeficiency virus type 1 (HIV-1) infection of a signal-amplification boosted ELISA for HIV-1 p24 antigen in plasma after heat-mediated immune complex dissociation was prospectively compared with polymerase chain reaction-based procedures. Diagnostic sensitivity and specificity of the p24 antigen test were 100% and 99.2%, respectively. Quantification revealed RNA in 85.7% and p24 antigen in 87.4% of 230 samples from 25 infected children. Concentrations of these indices in individual samples correlated (P < .0001). Introduction or modification of antiretroviral treatment showed concordant responses of RNA and p24 antigen in 39 (90.7%) of 43 instances. The treatment-induced changes in concentrations of RNA were higher than those of p24 antigen in 11 instances. In 1 instance, however, the concentration change of p24 antigen was greater than that of RNA (P = .002). Variation of RNA concentrations was more marked than that of p24 antigen (P = .002). The p24 antigen test was equivalent to PCR for diagnosing and monitoring pediatrie HIV-1 infectio

    Phase conversion in a weakly first-order quark-hadron transition

    Full text link
    We investigate the process of phase conversion in a thermally-driven {\it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition, as the one provided by the MIT bag model.Comment: 12 pages, 10 figures; v2: 1 reference added, minor modifications, matches published versio
    • …
    corecore