33 research outputs found

    Influência do aumento energético proveniente de dieta hiperlipídica na disfunção cardíaca em ratos com estenose aórtica supravalvar: participação das cadeias pesadas de miosina e da bomba de cálcio do retículo sarcoplasmático

    No full text
    Cardiac remodeling (CR) occurs in response to some cardiac injuries, such as pressure overload, and it may be manifested as changes in size, shape and function of the heart. In the model of supravalvar aortic stenosis (SVAS), echocardiographic studies performed in our laboratory showed that, 2 and 6 weeks post SVAS induction, rats developed left ventricular hypertrophy, diastolic dysfunction and improved systolic function. After 12 weeks there is systolic dysfunction and around the 20th week signs of heart failure appear. Several factors could contribute to the dysfunction in this experimental model, such as changes in protein expression of sarcoplasmic reticulum calcium ATPase (SERCA2a) and myosin heavy chain (MyHC), both with high ATPase capacity. Pathological CR is underscored by a reduction in fatty acid beta oxidation, which may cause energy deficit to the hypertrophied cardiac muscle. The aim of this work was to test the hypothesis that increased energy supply, derived from high-fat diet, attenuates cardiac dysfunction in the SVAS model. The mechanisms involved in the attenuation of dysfunction are related to decreased V1(α) to V3(β) MyHC isoform transition and increased SERCA2a/PLB ratio. Male Wistar rats, aged 21 days, were separated into two groups: operated control (Sham) and supravalvar aortic stenosis (SVAS). Six weeks after surgery, the animals were redistributed into four groups (n=12/group): fed with normolipidic diet (Sham-N and SVAS-N) or high-fat diet (Sham-H and SVAS-H). The nutritional profile was determined by food and calorie intake, feed efficiency, weight and body fat, adiposity index, blood glucose, triacylglycerol and non-esterified free fatty acid. The CR was characterized by analyses of the cardiac structure and function by echocardiogram in the 6th and 18th week, macroscopic study, energy metabolism and SERCA2a/PLB and β/α MyHC cardiac ratios. For comparisons between Sham and SVAS we used Student t test ...A remodelação cardíaca (RC) ocorre em resposta a determinadas agressões como, por exemplo, sobrecarga pressórica, e pode manifestar-se por alterações de tamanho, forma e função do coração. No modelo de estenose aórtica supravalvar (EAo) em ratos, estudos ecocardiográficos constataram que, 2 e 6 semanas após indução da EAo, os ratos desenvolvem hipertrofia ventricular esquerda, disfunção diastólica e melhoria da função sistólica. Após 12 semanas há disfunção sistólica e perto da 20ª semana aparecem sinais de insuficiência cardíaca. Diversos fatores poderiam contribuir para a disfunção neste modelo experimental, como modificações na expressão proteica da bomba de cálcio do retículo sarcoplasmático (SERCA2a) e das cadeias pesadas de miosina (MyHC), ambas com alta capacidade ATPásica. Na RC patológica ocorre diminuição na beta oxidação de ácidos graxos, podendo acarretar déficit energético para o músculo cardíaco hipertrofiado. O objetivo deste trabalho foi testar a hipótese de que o aumento da oferta energética, proveniente de dieta hiperlipídica, atenua a disfunção diastólica e preserva a função sistólica no modelo de EAo. Os mecanismos envolvidos na preservação ou melhoria da função estão relacionados com a diminuição na transição da isoforma V1(α) para V3(β) da MyHC e com o aumento da relação SERCA2a/PLB. Foram utilizados ratos Wistar machos, com 21 dias, separados em dois grupos: controle operado (Sham) e estenose aórtica supravalvar (EAo). Seis semanas após cirurgia, os animais foram redistribuídos em quatro grupos (n=12/grupo): tratados com dieta normolipídica (EAo-N e Sham-N) ou hiperlipídica (EAo-H e Sham-H) por 12 semanas. O perfil nutricional foi determinado pelas análises de ingestão alimentar e calórica, eficiência alimentar, peso e gordura corporal, índice de adiposidade, glicemia, triacilglicerol e ácidos graxos livres não-esterificados. A RC foi ..

    Multivariate analysis for selecting animals for experimental research

    No full text
    Background Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS) was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA), aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid) was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate

    Análise multivariada na seleção de animais em pesquisas experimentais

    No full text
    Background: Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective: To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods: The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS) was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA), aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid) was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results: The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion: The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate.Fundamento: Muitos pesquisadores buscam métodos para a seleção de grupos homogêneos de animais em pesquisas experimentais, fato que se justifica por ser a homogeneidade pré-requisito indispensável à casualização de tratamentos. A ausência de métodos robustos, que atendam a princípios estatísticos e biológicos, faz com que os pesquisadores utilizem métodos empíricos ou subjetivos, influenciando seus resultados. Objetivo: Desenvolver modelo estatístico multivariado para a seleção de grupo homogêneo de animais para pesquisas experimentais e elaborar pacote computacional que o operacionalize. Métodos: O conjunto de dados ecocardiográficos de 115 ratos Wistar, machos, com estenose aórtica (EAo) supravalvular foi utilizado para exemplificar o desenvolvimento do modelo. Inicialmente, os dados foram padronizados, tornando-se adimensionais. Em sequência, submeteu-se a matriz de variabilidade do conjunto à análise de componentes principais (ACP) buscando-se reduzir o espaço paramétrico e conservar a variabilidade relevante. Essa técnica estabeleceu um novo sistema cartesiano em que os animais foram alocados e, finalmente, construiu-se a região de confiança (elipsoide) para o perfil de respostas homogêneas dos animais. Os que se situaram no interior do elipsoide foram considerados pertencentes ao grupo homogêneo; caso contrário, espúrios ao grupo. Resultados: A ACP estabeleceu oito eixos descritores que representaram a variabilidade acumulada dos dados em 88,71%. A alocação dos animais no novo sistema e a construção da região de confiança revelou a presença de seis espúrios ao lote homogêneo formado por 109 animais. Conclusão: O critério biométrico proposto mostra-se eficiente, pois considera o animal como um todo, analisando conjuntamente todos os parâmetros mensurados, além de apresentar pequena frequência de descartes

    Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    No full text
    Abstract Background: Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. Objective: To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Methods: Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). Results: There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). Conclusion: GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca2+ transport

    Obesity does not Lead to Imbalance Between Myocardial Phospholamban Phosphorylation and Dephosphorylation

    No full text
    Background: The activation of the beta-adrenergic system promotes G protein stimulation that, via cyclic adenosine monophosphate (cAMP), alters the structure of protein kinase A (PKA) and leads to phospholamban (PLB) phosphorylation. This protein participates in the system that controls intracellular calcium in muscle cells, and it is the primary regulator of sarcoplasmic reticulum calcium pump activity. In obesity, the beta-adrenergic system is activated by the influence of increased leptin, therefore, resulting in higher myocardial phospholamban phosphorylation via cAMP-PKA. Objective: To investigate the involvement of proteins which regulate the degree of PLB phosphorylation due to beta-adrenergic activation in obesity. In the present study, we hypothesized that there is an imbalance between phospholamban phosphorylation and dephosphorylation, with prevalence of protein phosphorylation. Methods: Male Wistar rats were randomly distributed into two groups: control (n = 14), fed with normocaloric diet; and obese (n = 13), fed with a cycle of four unsaturated high-fat diets. Obesity was determined by the adiposity index, and protein expressions of phosphatase 1 (PP-1), PKA, PLB, phosphorylated phospholamban at serine16 (PPLB-Ser16) were assessed by Western blot. Results: Obesity caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia and did not alter the protein expression of PKA, PP-1, PLB, PPLB-Ser16. Conclusion: Obesity does not promote an imbalance between myocardial PLB phosphorylation and dephosphorylation via beta-adrenergic system

    Cardiac dysfunction induced by obesity es not related to beta-adrenergic system impairment at the receptor-signalling pathway

    No full text
    Obesity has been shown to impair myocardial performance. Some factors have been suggested as responsible for possible cardiac abnormalities in models of obesity, among them beta-adrenergic (βA) system, an important mechanism of regulation of myocardial contraction and relaxation. The objective of present study was to evaluate the involvement of βA system components in myocardial dysfunction induced by obesity. Thirty-day-old male Wistar rats were distributed in control (C, n = 25) and obese (Ob, n = 25) groups. The C group was fed a standard diet and Ob group was fed four unsaturated high-fat diets for 15 weeks. Cardiac function was evaluated by isolated papillary muscle preparation and βA system evaluated by using cumulative concentrations of isoproterenol and Western blot. After 15 weeks, the Ob rats developed higher adiposity index than C rats and several comorbidities; however, were not associated with changes in systolic blood pressure. Obesity caused structural changes and the myocardial responsiveness to post-rest contraction stimulus and increased extracellular calcium (Ca2+) was compromised. There were no changes in cardiac function between groups after βA stimulation. The obesity was not accompanied by changes in protein expression of G protein subunit alpha (Gsα) and βA receptors (β1AR and β2AR). In conclusion, the myocardial dysfunction caused by unsaturated high-fat diet-induced obesity, after 15 weeks, is not related to βAR system impairment at the receptor-signalling pathway.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Food restriction promotes downregulation of myocardial L-type Ca2+ channels

    No full text
    Food restriction (FR) has been shown to impair myocardial performance. However, the mechanisms behind these changes in myocardial function due to FR remain unknown. Since myocardial L-type Ca2+ channels may contribute to the cardiac dysfunction, we examined the influence of FR on L-type Ca2+ channels. Male 60-day-old Wistar rats were fed a control or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was evaluated in isolated left ventricular papillary muscles. The function of myocardial L-type Ca2+ channels was determined by using a pharmacological Ca2+ channel blocker, and changes in the number of channels were evaluated by mRNA and protein expression. FR decreased final body weights, as well as weights of the left and right ventricles. The Ca2+ channel blocker diltiazem promoted a higher blockade on developed tension in FR groups than in controls. The protein content of L-type Ca2+ channels was significantly diminished in FR rats, whereas the mRNA expression was similar between groups. These results suggest that the myocardial dysfunction observed in previous studies with FR animals could be caused by downregulation of L-type Ca2+ channels
    corecore