29 research outputs found

    Cardiometabolic risk factor clustering in patients with deficient branched‐chain amino acid catabolism: A case‐control study

    Get PDF
    AbstractClassical organic acidemias (OAs) result from defective mitochondrial catabolism of branched‐chain amino acids (BCAAs). Abnormal mitochondrial function relates to oxidative stress, ectopic lipids and insulin resistance (IR). We investigated whether genetically impaired function of mitochondrial BCAA catabolism associates with cardiometabolic risk factors, altered liver and muscle energy metabolism, and IR. In this case‐control study, 31 children and young adults with propionic acidemia (PA), methylmalonic acidemia (MMA) or isovaleric acidemia (IVA) were compared with 30 healthy young humans using comprehensive metabolic phenotyping including in vivo 31P/1H magnetic resonance spectroscopy of liver and skeletal muscle. Among all OAs, patients with PA exhibited abdominal adiposity, IR, fasting hyperglycaemia and hypertriglyceridemia as well as increased liver fat accumulation, despite dietary energy intake within recommendations for age and sex. In contrast, patients with MMA more frequently featured higher energy intake than recommended and had a different phenotype including hepatomegaly and mildly lower skeletal muscle ATP content. In skeletal muscle of patients with PA, slightly lower inorganic phosphate levels were found. However, hepatic ATP and inorganic phosphate concentrations were not different between all OA patients and controls. In patients with IVA, no abnormalities were detected. Impaired BCAA catabolism in PA, but not in MMA or IVA, was associated with a previously unrecognised, metabolic syndrome‐like phenotype with abdominal adiposity potentially resulting from ectopic lipid storage. These findings suggest the need for early cardiometabolic risk factor screening in PA

    4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue.

    Get PDF
    Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes

    A New Targeted Lipidomics Approach Reveals Lipid Droplets in Liver, Muscle and Heart as a Repository for Diacylglycerol and Ceramide Species in Non-Alcoholic Fatty Liver

    No full text
    Obesity is frequently associated with excessive accumulation of lipids in ectopic tissue and presents a major risk factor for type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Diacylglycerols (DAGs) and ceramides (CERs) were identified as key players in lipid-induced insulin resistance, typical for such diseases. Recent results suggest that the subcellular distribution of these lipids affects their lipotoxic properties. However, the subcellular dynamics of these lipids and the role of lipid droplets (LDs) as a potential storage site is not understood. Here, we developed a liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS)-method for the rapid and simultaneous quantification of DAG and CER species in tissue sample fractions. The assay is characterized by excellent recovery of analytes, limit of quantification, accuracy and precision. We established a fractionation protocol that allows the separation of subcellular tissue fractions. This method was subsequently tested to measure the concentration of DAGs and CERs in subcellular fractions of human muscle and several mouse tissues. In a mouse model of NAFLD, application of this method revealed a prominent role for LDs as repository for lipotoxic DAG and CER species. In conclusion, the new method proved as a valuable tool to analyse the subcellular dynamics of lipotoxins, related to the pathogenesis of insulin resistance, T2D and NAFLD

    Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver Is Lost in Steatohepatitis

    Get PDF
    SummaryThe association of hepatic mitochondrial function with insulin resistance and non-alcoholic fatty liver (NAFL) or steatohepatitis (NASH) remains unclear. This study applied high-resolution respirometry to directly quantify mitochondrial respiration in liver biopsies of obese insulin-resistant humans without (n = 18) or with (n = 16) histologically proven NAFL or with NASH (n = 7) compared to lean individuals (n = 12). Despite similar mitochondrial content, obese humans with or without NAFL had 4.3- to 5.0-fold higher maximal respiration rates in isolated mitochondria than lean persons. NASH patients featured higher mitochondrial mass, but 31%–40% lower maximal respiration, which associated with greater hepatic insulin resistance, mitochondrial uncoupling, and leaking activity. In NASH, augmented hepatic oxidative stress (H2O2, lipid peroxides) and oxidative DNA damage (8-OH-deoxyguanosine) was paralleled by reduced anti-oxidant defense capacity and increased inflammatory response. These data suggest adaptation of the liver (“hepatic mitochondrial flexibility”) at early stages of obesity-related insulin resistance, which is subsequently lost in NASH

    Bax inhibitor-1 deficiency leads to obesity by increasing Ca2+-dependent insulin secretion

    No full text
    Transmembrane BAX inhibitor motif containing 6 (TMBIM6), also known as Bax inhibitor-1, is an evolutionarily conserved protein involved in endoplasmic reticulum (ER) function. TMBIM6 is an ER C
    corecore