6 research outputs found
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Coming of age - The mangrove propagule, parental investment and the dual functionality towards autonomy and establishment"
info:eu-repo/semantics/publishe
Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients
The most common pathogenic mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic GGGGCC (G4C2) repeat in the chromosome 9 open reading frame 72 (C9orf72) gene. Cellular toxicity due to RNA foci and dipeptide repeat (DPR) proteins produced by the sense and antisense repeat-containing transcripts is thought to underlie the pathogenesis of both diseases.RNA sequencing (RNA-seq) data of C9orf72-ALS patients and controls were analyzed to better understand the sequence conservation of C9orf72 in patients. MicroRNAs were developed in conserved regions to silence C9orf72 (miC), and the feasibility of different silencing approaches was demonstrated in reporter overexpression systems. In addition, we demonstrated the feasibility of a bidirectional targeting approach by expressing two concatenated miC hairpins. The efficacy of miC was confirmed by the reduction of endogenously expressed C9orf72 mRNA, in both nucleus and cytoplasm, and an ∼50% reduction of nuclear RNA foci in (G4C2)44-expressing cells. Ultimately, two miC candidates were incorporated in adeno-associated virus vector serotype 5 (AAV5), and silencing of C9orf72 was demonstrated in HEK293T cells and induced pluripotent stem cell (iPSC)-derived neurons. These data support the feasibility of microRNA (miRNA)-based and AAV-delivered gene therapy that could alleviate the gain of toxicity seen in ALS and FTD patients. Keywords: C9orf72, ALS, FTD, gene therapy, microRN
Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington's Disease
Huntington's disease (HD) is a neurodegenerative disorder caused by accumulation of CAG expansions in the huntingtin (HTT) gene. Hence, decreasing the expression of mutated HTT (mtHTT) is the most upstream approach for treatment of HD. We have developed HTT gene-silencing approaches based on expression cassette-optimized artificial miRNAs (miHTTs). In the first approach, total silencing of wild-type and mtHTT was achieved by targeting exon 1. In the second approach, allele-specific silencing was induced by targeting the heterozygous single-nucleotide polymorphism (SNP) rs362331 in exon 50 or rs362307 in exon 67 linked to mtHTT. The miHTT expression cassette was optimized by embedding anti-HTT target sequences in ten pri-miRNA scaffolds and their HTT knockdown efficacy, allele selectivity, passenger strand activity, and processing patterns were analyzed in vitro. Furthermore, three scaffolds expressing miH12 targeting exon 1 were incorporated in an adeno-associated viral serotype 5 (AAV5) vector and their HTT knock-down efficiency and pre-miHTT processing were compared in the humanized transgenic Hu128/21 HD mouse model. Our data demonstrate strong allele-selective silencing of mtHTT by miSNP50 targeting rs362331 and total HTT silencing by miH12 both in vitro and in vivo. Ultimately, we show that HTT knock-down efficiency and guide strand processing can be enhanced by using different cellular pri-miRNA scaffolds
Association of Preeclampsia with Podocyte Turnover
BACKGROUND AND OBJECTIVES: Preeclampsia is characterized by hypertension and proteinuria, and increased shedding of podocytes into the urine is a common finding. This finding raises the question of whether preeclamptic nephropathy involves podocyte damage. This study examined podocyte-related changes in a unique sample of renal tissues obtained from women who died of preeclampsia. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: All patients with preeclampsia who died in The Netherlands since 1990 and had available autopsy tissue were identified using a nationwide database of the Dutch Pathology Registry (PALGA). This resulted in a cohort of 11 women who died from preeclampsia. Three control groups were also identified during the same time period, and consisted of normotensive women who died during pregnancy (n=25), and nonpregnant controls either with (n=14) or without (n=13) chronic hypertension. Glomerular lesions, including podocyte numbers, podocyte proliferation, and parietal cell activation, were measured. RESULTS: Patients with preeclampsia had prominent characteristic glomerular lesions. The results showed that the number of podocytes per glomerulus did not differ significantly between the patients with preeclampsia and the control groups. However, preeclampsia was associated with a significant increase in intraglomerular cell proliferation (7.3% [SD 9.4] of the glomeruli of patients with preeclampsia had Ki-67–positive cells versus 1.6% [SD 3.3] of the glomeruli of hypertensive controls and 1.1% [SD 1.3] of nonpregnant controls; P=0.004) and activated parietal epithelial cells on a podocyte location (34% [SD 13.1] of the glomeruli of patients with preeclampsia versus 18.0% [SD 15.3] of pregnant controls, 11.9% [SD 13.2] of hypertensive controls, and 10.8% [SD 13.4] of nonpregnant controls; P=0.01). CONCLUSIONS: These findings suggest that the recently described mechanisms of podocyte replacement play a role in preeclampsia. These results provide key new insights into the pathogenesis of preeclamptic nephropathy, and they open new possibilities for developing therapeutic modalities