10 research outputs found
Combined Inhibition of C5 and CD14 Attenuates Systemic Inflammation in a Piglet Model of Meconium Aspiration Syndrome
Background: Meconium aspiration syndrome (MAS) is a severe lung condition affecting newborns and it can lead to a systemic inflammatory response. We previously documented complement activation and cytokine release in a piglet MAS model. Additionally, we showed ex vivo that meconium-induced inflammation was dependent on complement and Toll-like receptors.
Objectives: To assess the efficacy of the combined inhibition of complement (C5) and CD14 on systemic inflammation induced in a forceful piglet MAS model.
Methods: Thirty piglets were randomly allocated to a treatment group receiving the C5-inhibitor SOBI002 and anti-CD14 (n = 15) and a nontreated control group (n = 15). MAS was induced by intratracheal meconium instillation, and the piglets were observed for 5 h. Complement, cytokines, and myeloperoxidase (MPO) were measured by ELISA.
Results: SOBI002 ablated C5 activity and the formation of the terminal complement complex in vivo. The combined inhibition attenuated the inflammasome cytokines IL-1β and IL-6 by 60 (p = 0.029) and 44% (p = 0.01), respectively, and also MPO activity in the bronchoalveolar fluid by 42% (p = 0.017). Ex vivo experiments in human blood revealed that the combined regimen attenuated meconium-induced MPO release by 64% (p = 0.008), but there was only a negligible effect with single inhibition, indicating a synergic cross-talk between the key molecules C5 and CD14.
Conclusion: Combined inhibition of C5 and CD14 attenuates meconium-induced inflammation in vivo and this could become a future therapeutic regimen for MAS
Defining the role of common variation in the genomic and biological architecture of adult human height
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants
Genetic studies of body mass index yield new insights for obesity biology
Note: A full list of authors and affiliations appears at the end of the article.
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p