6 research outputs found

    Structure analysis of group I plant nucleases

    No full text

    Capturing Performance Assumptions using Stochastic Performance Logic

    No full text
    Compared to functional unit testing, automated performance testing is difficult, partially because correctness criteria are more difficult to express for performance than for functionality. Where existing approaches rely on absolute bounds of the execution time, we aim to express assertions on code performance in relative, hardware-independent terms. To this end, we introduce Stochastic Performance Logic (SPL), which allows making statements about relative method performance. Since SPL interpretation is based on statistical tests applied to performance measurements, it allows (for a special class of formulas) calculating the minimum probability at which a particular SPL formula holds. We prove basic properties of the logic and present an algorithm for SAT-solver-guided evaluation of SPL formulas, which allows optimizing the number of performance measurements that need to be made. Finally, we propose integration of SPL formulas with Java code using higher-level performance annotations, for performance testing and documentation purposes

    Application of Vegetable Oil-Based Monomers in the Synthesis of Acrylic Latexes via Emulsion Polymerization

    No full text
    In this work, two bio-based raw materials, rapeseed oil and technical-grade oleic acid, were modified to yield acrylated monomers. Polymeric latexes designed for coating applications were synthesized using emulsion polymerization. Methyl methacrylate and butyl acrylate were copolymerized with various ratios of the acrylated bio-based monomers (0–20 wt.% in the monomer mixture). The polymerization with high monomer conversion and low coagulum content was successfully performed up to the content of 15 wt.% of the bio-based monomers, leading to long-term stable latexes. The asymmetric flow field flow fractionation coupled with a multi-angle light scattering detector was used to describe the molar mass distribution of the synthesized copolymers. Ultra-high molar mass fractions were detected in copolymers comprising the bio-based monomers due to the presence of multi-acrylated bio-based ingredients originating from linoleic and linolenic fatty acids. This phenomenon became more pronounced for the rapeseed oil-originated monomer. The prepared latexes comprising copolymerized bio-based monomers showed comparable or even better coating performance in terms of gloss and water resistance in comparison with the reference acrylic coating, which makes the acrylated vegetable oil-based monomers attractive for the manufacturing of sustainable water-borne materials in the coating industry
    corecore