47 research outputs found

    Cosmological background solutions and cosmological backreactions

    Full text link
    The cosmological backreaction proposal, which attempts to account for observations without a primary dark energy source in the stress-energy tensor, has been developed and discussed by means of different approaches. Here, we focus on the concept of cosmological background solutions in order to develop a framework to study different backreaction proposals.Comment: 14 pages, 5 figures; major changes, replaced to match the version published in General Relativity and Gravitatio

    Cosmological Non-Linearities as an Effective Fluid

    Full text link
    The universe is smooth on large scales but very inhomogeneous on small scales. Why is the spacetime on large scales modeled to a good approximation by the Friedmann equations? Are we sure that small-scale non-linearities do not induce a large backreaction? Related to this, what is the effective theory that describes the universe on large scales? In this paper we make progress in addressing these questions. We show that the effective theory for the long-wavelength universe behaves as a viscous fluid coupled to gravity: integrating out short-wavelength perturbations renormalizes the homogeneous background and introduces dissipative dynamics into the evolution of long-wavelength perturbations. The effective fluid has small perturbations and is characterized by a few parameters like an equation of state, a sound speed and a viscosity parameter. These parameters can be matched to numerical simulations or fitted from observations. We find that the backreaction of small-scale non-linearities is very small, being suppressed by the large hierarchy between the scale of non-linearities and the horizon scale. The effective pressure of the fluid is always positive and much too small to significantly affect the background evolution. Moreover, we prove that virialized scales decouple completely from the large-scale dynamics, at all orders in the post-Newtonian expansion. We propose that our effective theory be used to formulate a well-defined and controlled alternative to conventional perturbation theory, and we discuss possible observational applications. Finally, our way of reformulating results in second-order perturbation theory in terms of a long-wavelength effective fluid provides the opportunity to understand non-linear effects in a simple and physically intuitive way.Comment: 84 pages, 3 figure

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Groups and individuals: conformity and diversity in the performance of gendered identities

    Get PDF
    The nature and role of social groups is a central tension in sociology. On the one hand, the idea of a group enables sociologists to locate and describe individuals in terms of characteristics that are shared with others. On the other, emphasizing the fluidity of categories such as gender or ethnicity undermines their legitimacy as ways of classifying people and, by extension, the legitimacy of categorization as a goal of sociological research. In this paper, we use a new research method known as the Imitation Game to defend the social group as a sociological concept. We show that, despite the diversity of practices that may be consistent with self‐identified membership of a group, there are also shared normative expectations – typically narrower in nature than the diversity displayed by individual group members – that shape the ways in which category membership can be discussed with, and performed to, others. Two claims follow from this. First, the Imitation Game provides a way of simultaneously revealing both the diversity and ‘groupishness’ of social groups. Second, that the social group, in the quasi‐Durkheimian sense of something that transcends the individual, remains an important concept for sociology
    corecore