36 research outputs found

    Insight into the Mechanism of Action of Heparin Cofactor II

    No full text

    Placental dermatan sulfate: isolation, anticoagulant activity, and association with heparin cofactor II

    No full text
    Pregnancy is associated with hemostatic challenges that may lead to thrombosis. Heparin cofactor II (HCII) is a glycosaminoglycan-dependent thrombin inhibitor present in both maternal and fetal plasma. HCII activity increases during pregnancy, and HCII levels are significantly decreased in women with severe pre-eclampsia. Dermatan sulfate (DS) specifically activates HCII and is abundant in the placenta, but the locations of DS and HCII in the placenta have not been determined. We present evidence that DS is the major anticoagulant glycosaminoglycan in the human placenta at term. DS isolated from human placenta contains disaccharides implicated in activation of HCII and has anticoagulant activity similar to that of mucosal DS. Immunohistochemical studies revealed that DS is associated with fetal blood vessels and stromal regions of placental villi but is notably absent from the syncytiotrophoblast cells in contact with the maternal circulation. HCII colocalizes with DS in the walls of fetal blood vessels and is also present in syncytiotrophoblast cells. Our data suggest that DS is in a position to activate HCII in the fetal blood vessels or in the stroma of placental villi after injury to the syncytiotrophoblast layer and thereby inhibit fibrin generation in the placenta

    Thrombomodulin Is Required For The Antithrombotic Activity Of Thrombin Mutant W215a/e217a In A Mouse Model Of Arterial Thrombosis.

    No full text
    The thrombin mutant W215A/E217A (WE thrombin) has greatly reduced procoagulant activity, but it activates protein C in the presence of thrombomodulin and inhibits binding of platelet glycoprotein Ib to von Willebrand factor and collagen under flow conditions. Both thrombomodulin-dependent protein C activation and inhibition of platelet adhesion could contribute to the antithrombotic activity of WE thrombin. To assess the role of thrombomodulin, we administered WE thrombin to thrombomodulin-deficient (TM(Pro/Pro)) mice and measured the time to occlusive thrombus formation in the carotid artery after photochemical injury of the endothelium. Doses of WE thrombin ≥10μg/kg prolonged the thrombosis time of wild-type mice (>1.6-fold), while doses ≥100μg/kg only slightly prolonged the thrombosis time of TM(Pro/Pro) mice. We conclude that thrombomodulin plays a predominate role in mediating the antithrombotic effect of WE thrombin in the arterial circulation of mice after endothelial injury. Thrombomodulin-independent effects may occur only when high doses of WE thrombin are administered.130646-

    Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule.

    No full text
    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity
    corecore