51 research outputs found
Recommended from our members
The effect and stability of MVCT images on adaptive TomoTherapy.
Use of helical TomoTherapy-based MVCT imaging for adaptive planning is becoming increasingly popular. Treatment planning and dose calculations based on MVCT require an image value to electron density calibration to remain stable over the course of treatment time. In this work, we have studied the dosimetric impact on TomoTherapy treatment plans due to variation in image value to density table (IVDT) curve as a function of target degradation. We also have investigated the reproducibility and stability of the TomoTherapy MVCT image quality over time. Multiple scans of the TomoTherapy "Cheese" phantom were performed over a period of five months. Over this period, a difference of 4.7% in the HU values was observed in high-density regions while there was no significant variation in the image values for the low densities of the IVDT curve. Changes in the IVDT curves before and after target replacement were measured. Two clinical treatment sites, pelvis and prostate, were selected to study the dosimetric impact of this variation. Dose was recalculated on the MVCTs with the planned fluence using IVDT curves acquired before and after target change. For the cases studied, target replacement resulted in an overall difference of less than 5%, which can be significant for hypo-fractionated cases. Hence, it is recommended to measure the IVDT curves on a monthly basis and after any major repairs/replacements
A single-institution experience with 177Lu RPT workflow improvements and qualifying the SPECT/CT imaging for dosimetry
Background and purposeImplementing any radiopharmaceutical therapy (RPT) program requires a comprehensive review of system readiness, appropriate workflows, and training to ensure safe and efficient treatment delivery. A quantitative assessment of the dose delivered to targets and organs at risk (OAR) using RPT is possible by correlating the absorbed doses with the delivered radioactivity. Integrating dosimetry into an established RPT program demands a thorough analysis of the necessary components and system fine-tuning. This study aims to report an optimized workflow for molecular radiation therapy using 177Lu with a primary focus on integrating patient-specific dosimetry into an established radiopharmaceutical program in a radiation oncology setting.Materials and methodsWe comprehensively reviewed using the Plan–Do–Check–Act (PDCA) cycle, including efficacy and accuracy of delivery and all aspects of radiation safety of the RPT program. The GE Discovery SPECT/CT 670DR™ system was calibrated per MIM protocol for dose calculation on MIM SurePlan™ MRT software. Jaszcak Phantom with 15–20 mCi of 177Lu DOTATATE with 2.5 µM EDTA solution was used, with the main energy window defined as 208 keV ±10% (187.6 to 229.2 keV); the upper scatter energy window was set to 240 keV ±5% (228 to 252 keV), while the lower scatter energy window was 177.8 keV ±5% (168.9 to 186.7 keV). Volumetric quality control tests and adjustments were performed to ensure the correct alignment of the table, NM, and CT gantry on SPECT/CT. A comprehensive end-to-end (E2E) test was performed to ensure workflow, functionality, and quantitative dose accuracy.ResultsWorkflow improvements and checklists are presented after systematically analyzing over 400 administrations of 177Lu-based RPT. Injected activity to each sphere in the NEMA Phantom scan was quantified, and the MIM Sureplan MRT reconstruction images calculated activities within ±12% of the injected activity. Image alignment tests on the SPECT/CT showed a discrepancy of more than the maximum tolerance of 2.2 mm on any individual axis. As a result of servicing the machine and updating the VQC and COR corrections, the hybrid imaging system was adjusted to achieve an accuracy of <1 mm in all directions.ConclusionWorkflows and checklists, after analysis of system readiness and adequate training for staff and patients, are presented. Hardware and software components for patient-specific dosimetry are presented with a focus on hybrid image registration and correcting any errors that affect dosimetric quantification calculation. Moreover, this manuscript briefly overviews the necessary quality assurance requirements for converting diagnostic images into dosimetry measurement tools and integrating dosimetry for RPT based on 177Lu
Recommended from our members
The effect and stability of MVCT images on adaptive TomoTherapy.
Use of helical TomoTherapy-based MVCT imaging for adaptive planning is becoming increasingly popular. Treatment planning and dose calculations based on MVCT require an image value to electron density calibration to remain stable over the course of treatment time. In this work, we have studied the dosimetric impact on TomoTherapy treatment plans due to variation in image value to density table (IVDT) curve as a function of target degradation. We also have investigated the reproducibility and stability of the TomoTherapy MVCT image quality over time. Multiple scans of the TomoTherapy "Cheese" phantom were performed over a period of five months. Over this period, a difference of 4.7% in the HU values was observed in high-density regions while there was no significant variation in the image values for the low densities of the IVDT curve. Changes in the IVDT curves before and after target replacement were measured. Two clinical treatment sites, pelvis and prostate, were selected to study the dosimetric impact of this variation. Dose was recalculated on the MVCTs with the planned fluence using IVDT curves acquired before and after target change. For the cases studied, target replacement resulted in an overall difference of less than 5%, which can be significant for hypo-fractionated cases. Hence, it is recommended to measure the IVDT curves on a monthly basis and after any major repairs/replacements
- …