804 research outputs found

    Zone Diagrams in Euclidean Spaces and in Other Normed Spaces

    Full text link
    Zone diagram is a variation on the classical concept of a Voronoi diagram. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition. Formally it is defined as a fixed point of a certain "dominance" map. Asano, Matousek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space. We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano et al. We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) norm.Comment: Title page + 16 pages, 20 figure

    Multiscaling for Systems with a Broad Continuum of Characteristic Lengths and Times: Structural Transitions in Nanocomposites

    Full text link
    The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of timescales and OPs which is practical when only a few, widely-separated scales exist. The existence of a gap in the spectrum of timescales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component order parameters. A continuum of spatially non-local Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.Comment: 28 pages, 1 figur

    Qubit Decoherence and Non-Markovian Dynamics at Low Temperatures via an Effective Spin-Boson Model

    Full text link
    Quantum Brownian oscillator model (QBM), in the Fock-space representation, can be viewed as a multi-level spin-boson model. At sufficiently low temperature, the oscillator degrees of freedom are dynamically reduced to the lowest two levels and the system behaves effectively as a two-level (E2L) spin-boson model (SBM) in this limit. We discuss the physical mechanism of level reduction and analyze the behavior of E2L-SBM from the QBM solutions. The availability of close solutions for the QBM enables us to study the non-Markovian features of decoherence and leakage in a SBM in the non-perturbative regime (e.g. without invoking the Born approximation) in better details than before. Our result captures very well the characteristic non-Markovian short time low temperature behavior common in many models.Comment: 19 pages, 8 figure

    Crystal constructions in Number Theory

    Full text link
    Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these constructions, and how it allows access to some intricate objects in number theory and related open questions using tools of algebraic combinatorics

    Time-convolutionless reduced-density-operator theory of a noisy quantum channel: a two-bit quantum gate for quantum information processing

    Full text link
    An exact reduced-density-operator for the output quantum states in time-convolutionless form was derived by solving the quantum Liouville equation which governs the dynamics of a noisy quantum channel by using a projection operator method and both advanced and retarded propagators in time. The formalism developed in this work is general enough to model a noisy quantum channel provided specific forms of the Hamiltonians for the system, reservoir, and the mutual interaction between the system and the reservoir are given. Then, we apply the formulation to model a two-bit quantum gate composed of coupled spin systems in which the Heisenberg coupling is controlled by the tunneling barrier between neighboring quantum dots. Gate Characteristics including the entropy, fidelity, and purity are calculated numerically for both mixed and entangled initial states

    Effect of temperature on rheology behaviour of banana peel pectin extracted using hot compressed water

    Get PDF
    Banana peel pectin is extracted from banana peel waste using a hot compressed water extraction (140-160°C, 5 minutes, 1.18 mm particle size). Physicochemical contents of banana peel pectin were found to be in a similar range with commercial pectin, and is comprised of moisture (7.44-8.47%), ash (3.45-4.98%), protein (1.08-1.92%), fat (0.04-3.42), carbohydrate (83-86%), total sugar (1.77-3.41%), energy (353-369 kcal/100g) and specific heat (1.42-1.62 kJ/kg°C). These contents possibly related to their flow deformation of rheological behaviour. Regression analysis displayed good agreements in all models applied, apart from the Casson Model. Flow behaviour indices, n<1 and decreasing of apparent viscosity within increasing of shear rate indicates that banana peel pectin has excellent shear thinning behaviour with a presence of yield stress

    Efficiently Correcting Matrix Products

    Get PDF
    We study the problem of efficiently correcting an erroneous product of two n×nn\times n matrices over a ring. Among other things, we provide a randomized algorithm for correcting a matrix product with at most kk erroneous entries running in O~(n2+kn)\tilde{O}(n^2+kn) time and a deterministic O~(kn2)\tilde{O}(kn^2)-time algorithm for this problem (where the notation O~\tilde{O} suppresses polylogarithmic terms in nn and kk).Comment: Fixed invalid reference to figure in v

    Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures

    Full text link
    By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the onset of non-equilibrium behaviour in colloid-polymer mixtures. These mixtures can function as models of atomic systems; their physics therefore impinges on many areas of thermodynamics and phase-ordering. An exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high density from a supersaturated low density phase, whose diffusive depletion drives the interfacial motion. In addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-density phase, above which the two interfaces become unbound and the metastable phase grows ad infinitum. The growth of the stable phase is suppressed in this regime.Comment: 27 pages, Latex, eps
    corecore