8 research outputs found

    Dexamethasone and Acetate Modulate Cytoplasmic Leptin in Bovine Preadipocytes

    Get PDF
    Hormonal and nutrient signals regulate leptin synthesis and secretion. In rodents, leptin is stored in cytosolic pools of adipocytes. However, not much information is available regarding the regulation of intracellular leptin in ruminants. Recently, we demonstrated that leptin mRNA was expressed in bovine intramuscular preadipocyte cells (BIP cells) and that a cytoplasmic leptin pool may be present in preadipocytes. In the present study, we investigated the expression of cytoplasmic leptin protein in BIP cells during differentiation as well as the effects of various factors added to the differentiation medium on its expression in BIP cells. Leptin mRNA expression was observed only at 6 and 8 days after adipogenic induction, whereas the cytoplasmic leptin concentration was the highest on day 0 and decreased gradually thereafter. Cytoplasmic leptin was detected at 6 and 8 days after adipogenic induction, but not at 4 days after adipogenic induction. The cytoplasmic leptin concentration was reduced in BIP cells at 4 days after treatment with dexamethasone, whereas cytoplasmic leptin was not observed at 8 days after treatment. In contrast, acetate significantly enhanced the cytoplasmic leptin concentration in BIP cells at 8 days after treatment, although acetate alone did not induce adipocyte differentiation in BIP cells. These results suggest that dexamethasone and acetate modulate the cytoplasmic leptin concentration in bovine preadipocytes

    Effect of Dietary 4-Phenylbuthyric Acid Supplementation on Acute Heat-Stress-Induced Hyperthermia in Broiler Chickens

    No full text
    Hot, humid weather causes heat stress (HS) in broiler chickens, which can lead to high mortality. A recent study found that HS causes endoplasmic reticulum (ER) stress. However, the possible involvement of ER stress in HS-induced physiological alterations in broiler chickens is unclear. This study aimed to evaluate the effect of the dietary supplementation of 4-phenylbutyric acid (4-PBA), an alleviator of ER stress, in acute HS-exposed young broiler chickens. Twenty-eight 14-day-old male broiler chickens (ROSS 308) were divided into two groups and fed either a control diet or a diet containing 4-PBA (5.25 g per kg of diet feed) for 10 days. At 24 days old, each group of chickens was kept in thermoneutral (24 ± 0.5 °C) or acute HS (36 ± 0.5 °C) conditions for 2 h. The results showed that thermoneutral birds supplemented with 4-PBA exhibited no negative effects in terms of broiler body weight gain and tissue weight compared to non-supplemental birds. HS increased body temperature in both the control and 4-PBA groups, but the elevation was significantly lower in the 4-PBA group than in the control group. The plasma non-esterified fatty acid concentration was significantly increased by HS treatment in non-supplemental groups, while the increase was partially attenuated in the 4-PBA group. Moreover, 4-PBA prevented HS-induced gene elevation of the ER stress markers GRP78 and GRP94 in the skeletal muscle. These findings suggest that the 4-PBA effect may be specific to the skeletal muscle in HS-exposed birds and that 4-PBA supplementation attenuated HS-induced muscle ER stress, which could be associated with a supplementation of the body temperature elevation and lipolysis

    ALS-Linked P56S-VAPB Mutation Impairs the Formation of Multinuclear Myotube in C2C12 Cells

    No full text
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder that affects upper and lower motor neurons. Since motor neurons target skeletal muscles, the maintenance system of muscles is disturbed in ALS; however, the mechanism by which this occurs is unknown. In the present study, we investigated the effects of ALS-associated P56S-vesicle-associated membrane protein-associated protein B (VAPB) (P56S-VAPB) on the IRE1-XBP1 pathway, which is involved in the unfolded protein response (UPR) of the mouse myoblast cell line (C2C12 cells). Experiments with C2C12 cells transfected with wild-type wt-VAPB and P56S-VAPB expression vectors showed reduced myotube formation and aberrant myonuclear position in cells expressing P56S-VAPB. Activity of the IRE1-XBP1 pathway in the cells visualized with the ERAI system revealed that the pathway was disrupted in cells expressing P56S-VAPB, whereas the IRE1-XBP1 pathway activity was enhanced in the differentiation process of normal C2C12 cells. These results suggest that disruption of the IRE1-XBP1 pathway is a cause for the reduced myotube formation in P56S-VAPB-expressing cells. The expression level of the VAPB protein has been reported to be reduced in the neurons of patients with ALS. Therefore, it is expected that the IRE1-XBP1 pathway is also impaired in muscle tissues of patients with ALS, which causes a disturbance in the muscle maintenance system

    IRE1-XBP1 Pathway of the Unfolded Protein Response Is Required during Early Differentiation of C2C12 Myoblasts

    Get PDF
    In skeletal muscle, myoblast differentiation results in the formation of multinucleated myofibers. Although recent studies have shown that unfolded protein responses (UPRs) play an important role in intracellular remodeling and contribute to skeletal muscle differentiation, the involvement of IRE1–XBP1 signaling, a major UPR signaling pathway, remains unclear. This study aimed to investigate the effect of the IRE1–XBP1 pathway on skeletal muscle differentiation. In C2C12 cells, knockdown of IRE1 and XBP1 in cells remarkably suppressed differentiation. In addition, apoptosis and autophagy were dramatically enhanced in the XBP1-knockdown cells, highlighting the participation of IRE1–XBP1 in cell survival maintenance with differentiation stimuli during skeletal muscle differentiation. In myogenic cells, we demonstrated that the expression of CDK5 (cyclin-dependent kinase 5) is regulated by XBP1s, and we propose that XBP1 regulates the expression of MyoD family genes via the induction of CDK5. In conclusion, this study revealed that IRE1–XBP1 signaling plays critical roles in cell viability and the expression of differentiation-related genes in predifferentiated myoblasts and during the early differentiation phase
    corecore