2,504 research outputs found

    Influence of Nd on the magnetic properties of Nd1-xCaxMnO3

    Full text link
    The role played by the Nd ions in the magnetic properties of Nd0.5Ca0.5MnO3 and Nd0.7Ca0.3MnO3 is studied using static magnetization, neutron diffraction and high frequency (9.4-475GHz) Electron Spin Resonance. We show that the Nd ions are weakly coupled to the Mn ions via ferromagnetic exchange and are responsible for the peculiar ferromagnetic resonance observed in the FM phase of both compounds (ground state below 120K for x=0.3, high field state for x=0.5). We then use ESR to look for magnetic phase separation in the low field, CO phase of Nd0.5Ca0.5MnO3. We show that there is no trace of the FM phase imbedded in the CO phase, contrary to what is observed in La0.5Ca0.5MnO3 or Pr0.5Sr0.5MnO3.Comment: to be published in phys.Rev.B as a Rapid Com

    The 3.4 micron emission in comets

    Get PDF
    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics will require comet spectra with signal-to-noise and spectral resolution comparable to that available in spectra of the interstellar medium. Such observations are currently being planned

    Nodal degenerations of plane curves and Galois covers

    Full text link
    Globally irreducible nodes (i.e. nodes whose branches belong to the same irreducible component) have mild effects on the most common topological invariants of an algebraic curve. In other words, adding a globally irreducible node (simple nodal degeneration) to a curve should not change them a lot. In this paper we study the effect of nodal degeneration of curves on fundamental groups and show examples where simple nodal degenerations produce non-isomorphic fundamental groups and this can be detected in an algebraic way by means of Galois coverings.Comment: 16 pages, 3 figure

    Structural Basis for the Antiviral Activity of BST-2/Tetherin and Its Viral Antagonism

    Get PDF
    The interferon-inducible host restriction factor bone marrow stromal antigen 2 (BST-2/tetherin) blocks the release of HIV-1 and other enveloped viruses. In turn, these viruses have evolved specific antagonists to counteract this host antiviral molecule, such as the HIV-1 protein Vpu. BST-2 is a type II transmembrane protein with an unusual topology consisting of an N-terminal cytoplasmic tail (CT) followed by a single transmembrane (TM) domain, a coiled-coil extracellular (EC) domain, and a glycosylphosphatidylinositol (GPI) anchor at the C terminus. We and others showed that BST-2 restricts enveloped virus release by bridging the host and virion membranes with its two opposing membrane anchors and that deletion of either one completely abrogates antiviral activity. The EC domain also shows conserved structural properties that are required for antiviral function. It contains several destabilizing amino acids that confer the molecule with conformational flexibility to sustain the protein’s function as a virion tether, and three conserved cysteine residues that mediate homodimerization of BST-2, as well as acting as a molecular ruler that separates the membrane anchors. Conversely, the efficient release of virions is promoted by the HIV-1 Vpu protein and other viral antagonists. Our group and others provided evidence from mutational analyses indicating that Vpu antagonism of BST-2-mediated viral restriction requires a highly specific interaction of their mutual TM domains. This interpretation is further supported and expanded by the findings of the latest structural modeling studies showing that critical amino acids in a conserved helical face of these TM domains are required for Vpu–BST-2 interaction and antagonism. In this review, we summarize the current advances in our understanding of the structural basis for BST-2 antiviral function as well as BST-2-specific viral antagonism

    A strong 3.4 micron emission feature in comet Austin 1989c1

    Get PDF
    High resolution 2.8-4.0 micron spectra of the 'new' comet Austin 1989c1, taken on 15-16 May 1990 confirm the presence of the broad emission features around 3.4 and 3.52 micron seen in a number of bright comets and ascribed to organic material. Both the 3.4 micron band strength and the 3.52/3.36 micron flux ratios are among the largest so far observed. The data are consistent with the relationship between band strength and water production rate that was recently derived. Excess emission at 3.28 and 3.6 micron cannot be unambiguously identified as features due to the poor signal-to-noise ratio

    The abundances of ethane to acetylene in the atmospheres of Jupiter and Saturn

    Get PDF
    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter

    A Medium Resolution Near-Infrared Spectral Atlas of O and Early B Stars

    Full text link
    We present intermediate resolution (R ~ 8,000 - 12,000) high signal-to-noise H- and K-band spectroscopy of a sample of 37 optically visible stars, ranging in spectral type from O3 to B3 and representing most luminosity classes. Spectra of this quality can be used to constrain the temperature, luminosity and general wind properties of OB stars, when used in conjunction with sophisticated atmospheric model codes. Most important is the need for moderately high resolutions (R > 5000) and very high signal-to-noise (S/N > 150) spectra for a meaningful profile analysis. When using near-infrared spectra for a classification system, moderately high signal-to-noise (S/N ~ 100) is still required, though the resolution can be relaxed to just a thousand or two. In the appendix we provide a set of very high quality near-infrared spectra of Brackett lines in six early-A dwarfs. These can be used to aid in the modeling and removal of such lines when early-A dwarfs are used for telluric spectroscopic standards.Comment: 12 pages, 3 tables, 14 figures. AASTex preprint style. To appear in ApJS, November 2005. All spectra are available by contacting M.M. Hanso
    corecore