191 research outputs found
Preparation of Mouse Monoclonal Antibody for RB1CC1 and Its Clinical Application
RB1-inducible coiled-coil 1 (RB1CC1; also known as FIP200) plays important roles in several biological pathways such as cell proliferation and autophagy. Evaluation of RB1CC1 expression can provide useful clinical information on various cancers and neurodegenerative diseases. In order to realize the clinical applications, it is necessary to establish a stable supply of antibody and reproducible procedures for the laboratory examinations. In the present study, we have generated mouse monoclonal antibodies for RB1CC1, and four kinds of antibodies (N1-8, N1-216, N3-2, and N3-42) were found to be optimal for clinical applications such as ELISA and immunoblots and work as well as the pre-existing polyclonal antibodies. N1-8 monoclonal antibody provided the best recognition of RB1CC1 in the clinico-pathological examination of formalin-fixed paraffin-embedded tissues. These monoclonal antibodies will help to generate new opportunities in scientific examinations in biology and clinical medicine
ParaHaplo: A program package for haplotype-based whole-genome association study using parallel computing
<p>Abstract</p> <p>Background</p> <p>Since more than a million single-nucleotide polymorphisms (SNPs) are analyzed in any given genome-wide association study (GWAS), performing multiple comparisons can be problematic. To cope with multiple-comparison problems in GWAS, haplotype-based algorithms were developed to correct for multiple comparisons at multiple SNP loci in linkage disequilibrium. A permutation test can also control problems inherent in multiple testing; however, both the calculation of exact probability and the execution of permutation tests are time-consuming. Faster methods for calculating exact probabilities and executing permutation tests are required.</p> <p>Methods</p> <p>We developed a set of computer programs for the parallel computation of accurate P-values in haplotype-based GWAS. Our program, ParaHaplo, is intended for workstation clusters using the Intel Message Passing Interface (MPI). We compared the performance of our algorithm to that of the regular permutation test on JPT and CHB of HapMap.</p> <p>Results</p> <p>ParaHaplo can detect smaller differences between 2 populations than SNP-based GWAS. We also found that parallel-computing techniques made ParaHaplo 100-fold faster than a non-parallel version of the program.</p> <p>Conclusion</p> <p>ParaHaplo is a useful tool in conducting haplotype-based GWAS. Since the data sizes of such projects continue to increase, the use of fast computations with parallel computing--such as that used in ParaHaplo--will become increasingly important. The executable binaries and program sources of ParaHaplo are available at the following address: <url>http://sourceforge.jp/projects/parallelgwas/?_sl=1</url></p
OAZ-t/OAZ3 Is Essential for Rigid Connection of Sperm Tails to Heads in Mouse
Polyamines are known to play important roles in the proliferation and differentiation of many types of cells. Although considerable amounts of polyamines are synthesized and stored in the testes, their roles remain unknown. Ornithine decarboxylase antizymes (OAZs) control the intracellular concentration of polyamines in a feedback manner. OAZ1 and OAZ2 are expressed ubiquitously, whereas OAZ-t/OAZ3 is expressed specifically in germline cells during spermiogenesis. OAZ-t reportedly binds to ornithine decarboxylase (ODC) and inactivates ODC activity. In a prior study, polyamines were capable of inducing a frameshift at the frameshift sequence of OAZ-t mRNA, resulting in the translation of OAZ-t. To investigate the physiological role of OAZ-t, we generated OAZ-t–disrupted mutant mice. Homozygous OAZ-t mutant males were infertile, although the polyamine concentrations of epididymides and testes were normal in these mice, and females were fertile. Sperm were successfully recovered from the epididymides of the mutant mice, but the heads and tails of the sperm cells were easily separated in culture medium during incubation. Results indicated that OAZ-t is essential for the formation of a rigid junction between the head and tail during spermatogenesis. The detached tails and heads were alive, and most of the headless tails showed straight forward movement. Although the tailless sperm failed to acrosome-react, the heads were capable of fertilizing eggs via intracytoplasmic sperm injection. OAZ-t likely plays a key role in haploid germ cell differentiation via the local concentration of polyamines
SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodiumfalciparum
Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal “sterile α-motif” domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening
A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes
Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism
Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays
Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies
Polymorphisms in the ADRB2 gene and Graves disease: a case-control study and a meta-analysis of available evidence
<p>Abstract</p> <p>Background</p> <p>The beta-2-Adrenergic receptor (<it>ADRB2</it>) gene on chromosome 5q33.1 is an important immunoregulatory factor. We and others have previously implicated chromosomal region 5q31-33 for contribution to the genetic susceptibility to Graves disease (GD) in East-Asian populations. Two recent studies showed associations between the single nucleotide polymorphism (SNP) rs1042714 in the <it>ADRB2 </it>gene and GD. In this study, we aimed to fully investigate whether the <it>ADRB2 </it>gene conferred susceptibility to GD in Chinese population, and to perform a meta-analysis of association between <it>ADRB2 </it>and GD.</p> <p>Methods</p> <p>Approximately 1 kb upstream the transcription start site and the entire coding regions of the <it>ADRB2 </it>gene were resequenced in 48 Han Chinese individuals to determine the linkage disequilibrium (LD) patterns. Tag SNPs were selected and genotyped in a case-control collection of 1,118 South Han Chinese subjects, which included 428 GD patients and 690 control subjects. A meta-analysis was performed with the data obtained in the present samples and those available from prior studies.</p> <p>Results</p> <p>Fifteen SNPs in the <it>ADRB2 </it>gene were identified by resequencing and one SNP was novel. Ten tag SNPs were investigated further to assess association of <it>ADRB2 </it>in the case-control collection. Neither individual tag SNP nor haplotypes showed association with GD in Han Chinese population (P > 0.05). Our meta-analysis of the <it>ADRB2 </it>SNP rs1042714 measured heterogeneity between the ethnic groups (I<sup>2 </sup>= 53.1%) and no association to GD was observed in the overall three studies with a random effects model (OR = 1.13, 95% CI, 0.95 to 1.36; P = 0.18). However, significant association was found from the combined data of Caucasian population with a fixed effects model (OR = 1.18, 95% CI, 1.06 to 1.32; P = 0.002; I<sup>2 </sup>= 5.9%).</p> <p>Conclusion</p> <p>Our study indicated that the <it>ADRB2 </it>gene did not exert a substantial influence on GD susceptibility in Han Chinese population, but contributed to a detectable GD risk in Caucasian population. This inconsistency resulted largely from between-ethnicity heterogeneity.</p
- …