15 research outputs found

    Interrater agreement of anal cytology.

    No full text
    BackgroundThe majority of anal cancers are caused by persistent infections with carcinogenic human papillomaviruses (HPV). Similar to cervical carcinogenesis, the progression from HPV infection to anal cancer occurs through precancerous lesions that can be treated to prevent invasion. In analogy to cervical cytology, anal cytology has been proposed as a screening tool for anal cancer precursors in high-risk populations.MethodsThe authors analyzed the interobserver reproducibility of anal cytology in a population of 363 human immunodeficiency virus (HIV)-infected men who have sex with men (MSM). Liquid-based cytology (LBC) specimens were collected in the anal dysplasia clinic before the performance of high-resolution anoscopy on all patients. Papanicolaou-stained LBC slides were evaluated by 2 cytopathologists, each of whom was blinded to the clinical outcome and the other pathologist's results, using the revised Bethesda terminology.ResultsOverall agreement between the 2 observers was 66% (kappa, 0.54; linear-weighted kappa, 0.69). Using dichotomizing cytology results (atypical squamous cells of undetermined significance [ASC-US] or worse vs less than ASC-US), the agreement increased to 86% (kappa, 0.69). An increasing likelihood of testing positive for markers associated with HPV-related transformation, p16/Ki-67, and HPV oncogene messenger RNA was observed, with increasing severity of cytology results noted both for individual cytologists and for consensus cytology interpretation (P value for trend [p(trend)] < .0001 for all).ConclusionsModerate to good agreement was observed between 2 cytopathologists evaluating anal cytology samples collected from HIV-positive MSM. A higher severity of anal cytology was associated with biomarkers of anal precancerous lesions. Anal cytology may be used for anal cancer screening in high-risk populations, and biomarkers of HPV-related transformation can serve as quality control for anal cytology

    A comparison of human papillomavirus genotype-specific DNA and E6/E7 mRNA detection to identify anal precancer among HIV-infected men who have sex with men.

    No full text
    BackgroundHuman papillomavirus (HPV) RNA detection is reportedly more specific for the detection of anogenital precancer than HPV DNA but it is unknown whether this is due to detection of RNA or due to HPV genotype restriction.MethodsA total of 363 human immunodeficiency virus (HIV)-positive men who have sex with men had two anal cytology samples taken and were evaluated using high-resolution anoscopy and biopsies of visible lesions. Anal specimens were tested for E6/E7 RNA for five carcinogenic HPV genotypes (HPV16, 18, 31, 33, and 45) and tested for the DNA of 13 carcinogenic HPV genotypes.ResultsDNA testing was more likely to be positive than RNA testing (53% vs. 48%; P = 0.02) for the same five HPV genotypes in aggregate. When restricted to five HPV genotypes targeted by the RNA test, the sensitivity to detect anal precancer was the same for DNA and RNA (81%), whereas RNA was more specific than DNA (65% vs. 58%; P = 0.007). In comparison, DNA detection of all 13 carcinogenic HPV genotypes was more sensitive (96% vs. 81%; P = 0.001) but much less specific (65% vs. 33%; P < 0.001) as compared with RNA detection of the five HPV genotypes.ConclusionAfter controlling for HPV genotypes, RNA was only slightly more specific than DNA detection for anal precancer.ImpactDNA or RNA testing for a subset of the most carcinogenic HPV genotypes may be useful for distinguishing between those HPV-positive men at higher and lower risk of anal precancer and cancer

    Human papillomavirus genotyping, human papillomavirus mRNA expression, and p16/Ki-67 cytology to detect anal cancer precursors in HIV-infected MSM.

    No full text
    ObjectiveAnal cancer incidence is high in HIV-infected MSM. Screening for anal intraepithelial lesions and cancers is performed at specialized clinics and relies on high-resolution anoscopy (HRA) and anal cytology. Both approaches have limited reproducibility and sensitivity for detecting anal cancer precursors. We evaluated biomarkers for human papillomavirus (HPV)-related disease in a population of HIV-infected MSM.MethodsA cross-sectional screening study with passive follow-up included 363 MSM followed at a HIV/AIDS clinic. All men had anal cytology samples taken and were evaluated using HRA and anal biopsies. Using a composite endpoint of biopsy results and cytology, we compared the performance of HPV16/18 genotyping, HPVE6/E7 mRNA expression, and p16/Ki-67 cytology to detect high-grade anal intraepithelial neoplasias (AINs).ResultsFor all biomarkers analyzed, there was a significant trend of increasing percentage of men testing positive with increasing severity of disease (P < 0.001). HPV DNA testing had the highest sensitivity for anal intraepithelial neoplasia grade 2 and anal intraepithelial neoplasia grade 3 (AIN3), followed by p16/Ki-67, HPVE6/E7 mRNA testing, and HPV16/18 genotyping. The highest Youden's index was observed for HPVE6/E7 mRNA testing, followed by HPV16/18 genotyping, p16/Ki-67 cytology, and HPV DNA testing. Increasing the threshold for positivity of p16/Ki-67 to five or more positive cells led to significantly higher specificity, but unchanged sensitivity for detecting AIN3.ConclusionMolecular features of anal disease categories are similar to those of corresponding cervical lesions. Biomarkers evaluated for cervical cancer screening may be used for primary anal cancer screening or to decide who should require immediate treatment vs. expectant management
    corecore