370 research outputs found

    Structure of Metastable States in Phase Transitions with High-Spin Low-Spin Degree of Freedom

    Full text link
    Difference of degeneracy of the low-spin (LS) and high-spin (HS) states causes interesting entropy effects on spin-crossover phase transitions and charge transfer phase transitions in materials composed of the spin-crossover atoms. Mechanisms of the spin-crossover (SC) phase transitions have been studied by using Wajnflasz model, where the degeneracy of the spin states (HS or LS) is taken into account and cooperative natures of the spin-crossover phase transitions have been well described. Recently, a charge transfer (CT) phase transition due to electron hopping between LS and HS sites has been studied by using a generalized Wajnflasz model. In the both systems of SC and CT, the systems have a high temperature structure (HT) and a low temperature structure (LT), and the change between them can be a smooth crossover or a discontinuous first order phase transition depending on the parameters of the systems. Although apparently the standard SC system and the CT system are very different, it is shown that both models are equivalent under a certain transformation of variables. In both systems, the structure of metastable state at low temperatures is a matter of interest. We study temperature dependence of fraction of HT systematically in a unified model, and find several structures of equilibrium and metastable states of the model as functions of system parameters. In particular, we find a reentrant type metastable branch of HT in a low temperature region, which would play an important role to study the photo-irradiated processes of related materials.Comment: 19 pages, 11 figure

    Bulk and surface switching in Mn-Fe-based Prussian Blue Analogues

    Get PDF
    Many Prussian Blue Analogues are known to show a thermally induced phase transition close to room temperature and a reversible, photo-induced phase transition at low temperatures. This work reports on magnetic measurements, X-ray photoemission and Raman spectroscopy on a particular class of these molecular heterobimetallic systems, specifically on Rb0.81Mn[Fe(CN)6]0.95_1.24H2O, Rb0.97Mn[Fe(CN)6]0.98_1.03H2O and Rb0.70Cu0.22Mn0.78[Fe(CN)6]0.86_2.05H2O, to investigate these transition phenomena both in the bulk of the material and at the sample surface. Results indicate a high degree of charge transfer in the bulk, while a substantially reduced conversion is found at the sample surface, even in case of a near perfect (Rb:Mn:Fe=1:1:1) stoichiometry. Thus, the intrinsic incompleteness of the charge transfer transition in these materials is found to be primarily due to surface reconstruction. Substitution of a large fraction of charge transfer active Mn ions by charge transfer inactive Cu ions leads to a proportional conversion reduction with respect to the maximum conversion that is still stoichiometrically possible and shows the charge transfer capability of metal centers to be quite robust upon inclusion of a neighboring impurity. Additionally, a 532 nm photo-induced metastable state, reminiscent of the high temperature Fe(III)Mn(II) ground state, is found at temperatures 50-100 K. The efficiency of photo-excitation to the metastable state is found to be maximized around 90 K. The photo-induced state is observed to relax to the low temperature Fe(II)Mn(III) ground state at a temperature of approximately 123 K.Comment: 12 pages, 8 figure

    Realization of the mean-field universality class in spin-crossover materials

    Full text link
    In spin-crossover materials, the volume of a molecule changes depending on whether it is in the high-spin (HS) or low-spin (LS) state. This change causes distortion of the lattice. Elastic interactions among these distortions play an important role for the cooperative properties of spin-transition phenomena. We find that the critical behavior caused by this elastic interaction belongs to the mean-field universality class, in which the critical exponents for the spontaneous magnetization and the susceptibility are β=1/2\beta = 1/2 and γ=1\gamma = 1, respectively. Furthermore, the spin-spin correlation function is a constant at long distances, and it does not show an exponential decay in contrast to short-range models. The value of the correlation function at long distances shows different size-dependences: O(1/N)O(1/N), O(1/N)O(1/\sqrt{N}), and constant for temperatures above, at, and below the critical temperature, respectively. The model does not exhibit clusters, even near the critical point. We also found that cluster growth is suppressed in the present model and that there is no critical opalescence in the coexistence region. During the relaxation process from a metastable state at the end of a hysteresis loop, nucleation phenomena are not observed, and spatially uniform configurations are maintained during the change of the fraction of HS and LS. These characteristics of the mean-field model are expected to be found not only in spin-crossover materials, but also generally in systems where elastic distortion mediates the interaction among local states.Comment: 13 pages, 16 figure

    Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model.

    Get PDF
    With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use

    Early effects of oral administration of lafutidine with mosapride compared with lafutidine alone on intragastric pH values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ideal medication for treatment of acid related diseases should have a rapid onset of action to promote hemostasis and resolution of symptoms. The aim of our study was to investigate the inhibitory effects on gastric acid secretion after a single oral administrations of lafutidine, is a newly synthesized H2-receptor antagonist, with mosapride 5 mg or lafutidine alone.</p> <p>Methods</p> <p>Ten <it>Helicobacter pylori </it>negative male subjects participated in this randomized, two-way crossover study. Intragastric pH was monitored continuously for 4 hours after a single oral administration of lafutidine 10 mg or lafutidine 10 mg with mosapride 5 mg (the lafutidine being administrated one hour after the mosapride). Each administration was separated by a 7-day washout period.</p> <p>Results</p> <p>The average pH during the 4-hour period after administration of lafutidine 10 mg with mosapride 5 mg was higher than after lafutidine 10 mg alone (median: 5.25 versus 4.58, respectively; <it>p </it>= 0.0318). During the 3–4 hour study period, lafutidine 10 mg with mosapride 5 mg provided a higher pH, compared to lafutidine 10 mg alone (median: 7.28 versus 6.42; <it>p </it>= 0.0208).</p> <p>Conclusion</p> <p>In <it>H. pylori </it>negative healthy male subjects, an oral dose of lafutidine 10 mg with mosapride 5 mg more rapidly increased intragastric pH than lafutidine 10 mg alone.</p

    Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Get PDF
    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results
    corecore