449 research outputs found

    Divergence of the Magnetic Gr\"{u}neisen Ratio at the Field-Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    The heavy fermion compound YbRh2_2Si2_2 is studied by low-temperature magnetization M(T)M(T) and specific-heat C(T)C(T) measurements at magnetic fields close to the quantum critical point (Hc=0.06H_c=0.06 T, H⊥cH\perp c). Upon approaching the instability, dM/dTdM/dT is more singular than C(T)C(T), leading to a divergence of the magnetic Gr\"uneisen ratio Γmag=−(dM/dT)/C\Gamma_{\rm mag}=-(dM/dT)/C. Within the Fermi liquid regime, Γmag=−Gr(H−Hcfit)\Gamma_{\rm mag}=-G_r(H-H_c^{fit}) with Gr=−0.30±0.01G_r=-0.30\pm 0.01 and Hcfit=(0.065±0.005)H_c^{fit}=(0.065\pm 0.005) T which is consistent with scaling behavior of the specific-heat coefficient in YbRh2_2(Si0.95_{0.95}Ge0.05_{0.05})2_2. The field-dependence of dM/dTdM/dT indicates an inflection point of the entropy as a function of magnetic field upon passing the line T⋆(H)T^\star(H) previously observed in Hall- and thermodynamic measurements.Comment: 4 pages, 3 Figure

    Uniform Mixing of High-Tc Superconductivity and Antiferromagnetism on a Single CuO2 Plane in Hg-based Five-layered Cuprate

    Full text link
    We report a site selective Cu-NMR study on under-doped Hg-based five-layered high-TcT_{\rm c} cuprate HgBa2Ca4Cu5Oy with a Tc=72 K. Antiferromagnetism (AF) has been found to take place at TN=290 K, exhibiting a large antiferromagnetic moment of 0.67-0.69uB at three inner planes (IP's). This value is comparable to the values reported for non-doped cuprates, suggesting that the IP may be in a nearly non-doped regime. Most surprisingly, the AF order is also detected with M(OP)=0.1uB even at two outer planes (OP's) that are responsible for the onset of superconductivity (SC). The high-Tc SC at Tc = 72 K can uniformly coexist on a microscopic level with the AF at OP's. This is the first microscopic evidence for the uniform mixed phase of AF and SC on a single CuO2 plane in a simple environment without any vortex lattice and/or stripe order.Comment: 4 pages, 4 figures. To be published in Phys.Rev.Let

    Uniaxial stress tuning of geometrical frustration in a Kondo lattice

    Full text link
    Hexagonal CeRhSn with paramagnetic 4f4f moments on a distorted Kagome lattice displays zero-field quantum critical behavior related to geometrical frustration. We report high-resolution thermal expansion and magnetostriction measurements under multiextreme conditions such as uniaxial stress up to 200 MPa, temperatures down to 0.1 K and magnetic fields up to 10 T. Under uniaxial stress along the aa-direction, quantum criticality disappears and a complex magnetic phase diagram arises with a sequence of phases below 1.2 K and fields between 0 and 3 T (∥a\parallel a). Since the Kondo coupling increases with stress, which alone would stabilize paramagnetic behavior in CeRhSn, the observed order arises from the release of geometrical frustration by in-plane stress.Comment: Accepted in PRB Rapid Com

    Creating Support Systems for Black Women in Nontraditional STEM Career Paths

    Get PDF
    Although careers in science, technology, engineering, and mathematics (STEM) fields are widely acknowledged as central to the future, women remain largely underrepresented in these spheres. This is particularly true for Black women, highlighting the necessity of support systems and resources designed to promote their success in STEM. Ideally, these supports should begin during the K-12 years and continue throughout the course of their educational journeys. Current research indicates that Black women in STEM achieve greater, lasting success when they have access to structured support systems. As the career paths of Black women in STEM continue to evolve, there remains a need for adaptable structures and resources that are applicable to their unique needs. Yet, these supports often do not exist for those pursuing nontraditional STEM career paths. Therefore, this chapter underscores the need for Black women in STEM to establish their own support systems, aligned with their specific career paths

    Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnet Cs2CuCl4

    Full text link
    We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J'/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields
    • …
    corecore