10 research outputs found

    Biological and Biochemical Studies on Melanogenesis and M elanoma Cells

    Get PDF
    For the previous ten years, we have been studying intracellular transport of melanosoma1 proteins and their biological and biochemical functions in melanoma cells. Melanosoma1 proteins,tyrosinase, tyrosinase-related protein 1 (TYRP1) and TYRP2/DOPAchrome tautomerase (DCT), gp100/Pme117 are transported from the trans-Golgi network (TGN) to earlystage melanosomes via endosoma1 compartments. We suggest that Rab7 is involved in the vesicular transport of tyrosinase and TYRP1 and in the melanogenesis through the regulation of gp100/Pme117 maturation. TYRP1 and TYRP 2/DCT were shown to play an essential role in suppressing TYR-mediated cytotoxicity in melanocytic cells, possibly through interaction with TYR in melanosomes. We also studied apoptotic cell death of melanoma cells and death mediators. Among p53 family members, p51A (p63) induced apoptosis in both wild-type and mutant p53-expressing melanoma cells more significantly than p53 and 73β. Interferon(IFN) exerts anti-tumor activities possibly by regulating IFN-stimulated genes. Caspase-2 activation was commonly associated with induction of apoptosis in IFN一β一sensitive melanoma cells. The diacylglycero1 kinase (DGK) , expressed in several human melanoma cell lines but not in melanocytes, was a novel positive regulator of NF-KB, which suppresses TNF一α一induced melanoma cell apoptosis

    直腸癌の多発皮膚転移

    No full text

    Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma

    No full text
    Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade

    Molecular Events in the Melanogenesis Cascade as Novel Melanoma-Targeted Small Molecules: Principle and Development

    No full text
    Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo–dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout the body via lymphatic and blood circulation. At present, the most effective treatment method is surgical resection, and other attempted methods, such as chemotherapy, radiotherapy, immunotherapy, targeted therapy, and gene therapy, have not yet produced sufficient results. Since melanogenesis is a unique biochemical pathway that functions only in melanocytes and their neoplastic counterparts, melanoma cells, the development of drugs that target melanogenesis is a promising area of research. Melanin consists of small-molecule derivatives that are always synthesized by melanoma cells. Amelanosis reflects the macroscopic visibility of color changes (hypomelanosis). Under microscopy, melanin pigments and their precursors are present in amelanotic melanoma cells. Tumors can be easily targeted by small molecules that chemically mimic melanogenic substrates. In addition, small-molecule melanin metabolites are toxic to melanocytes and melanoma cells and can kill them. This review describes our development of chemo-thermo-immunotherapy based on the synthesis of melanogenesis-based small-molecule derivatives and conjugation to magnetite nanoparticles. We also introduce the other melanogenesis-related chemotherapy and thermal medicine approaches and discuss currently introduced targeted therapies with immune checkpoint inhibitors for unresectable/metastatic melanoma
    corecore