2,417 research outputs found
Extended quark mean-field model for neutron stars
We extend the quark mean-field (QMF) model to strangeness freedom to study
the properties of hyperons () in infinite baryon matter and
neutron star properties. The baryon-scalar meson couplings in the QMF model are
determined self-consistently from the quark level, where the quark confinement
is taken into account in terms of a scalar-vector harmonic oscillator
potential. The strength of such confinement potential for quarks is
constrained by the properties of finite nuclei, while the one for quark is
limited by the properties of nuclei with a hyperon. These two
strengths are not same, which represents the SU(3) symmetry breaking
effectively in the QMF model. Also, we use an enhanced coupling with
the vector meson, and both and hyperon potentials can be
properly described in the model. The effects of the SU(3) symmetry breaking on
the neutron star structures are then studied. We find that the SU(3) breaking
shifts earlier the hyperon onset density and makes hyperons more abundant in
the star, in comparisons with the results of the SU(3) symmetry case. However,
it does not affect much the star's maximum mass. The maximum masses are found
to be with hyperons and without hyperons. The
present neutron star model is shown to have limitations on explaining the
recently measured heavy pulsar.Comment: 7 pages, 7 figures, Phys. Rev. C (2014) accepte
Relativistic Hartree approach with exact treatment of vacuum polarization for finite nuclei
We study the relativistic Hartree approach with the exact treatment of the
vacuum polarization in the Walecka sigma-omega model. The contribution from the
vacuum polarization of nucleon-antinucleon field to the source term of the
meson fields is evaluated by performing the energy integrals of the Dirac Green
function along the imaginary axis. With the present method of the vacuum
polarization in finite system, the total binding energies and charge radii of
16O and 40Ca can be reproduced. On the other hand, the level-splittings in the
single-particle level, in particular the spin-orbit splittings, are not
described nicely because the inclusion of vacuum effect provides a large
effective mass with small meson fields. We also show that the derivative
expansion of the effective action which has been used to calculate the vacuum
contribution for finite nuclei gives a fairly good approximation.Comment: 15 pages, 8 figure
Strange meson-nucleon states in the quark potential model
The quark potential model and resonating group method are used to investigate
the bound states and/or resonances. The model potential consists of
the t-channel and s-channel one-gluon exchange potentials and the confining
potential with incorporating the QCD renormalization correction and the
spin-orbital suppression effect in it. It was shown in our previous work that
by considering the color octet contribution, use of this model to investigate
the low energy elastic scattering leads to the results which are in pretty
good agreement with the experimental data. In this paper, the same model and
method are employed to calculate the masses of the bound systems.
For this purpose, the resonating group equation is transformed into a standard
Schr\"odinger equation in which a nonlocal effective interaction
potential is included. Solving the Schr\"odinger equation by the variational
method, we are able to reproduce the masses of some currently concerned
states and get a view that these states possibly exist as
molecular states. For the system, the same calculation gives no support to
the existence of the resonance which was announced
recently.Comment: 15 pages, 4 figure
Chiral symmetry breaking and stability of strangelets
We discuss the stability of strangelets by considering dynamical chiral
symmetry breaking and confinement. We use a
symmetric Nambu--Jona-Lasinio model for chiral symmetry breaking supplemented
by a boundary condition for confinement. It is shown that strangelets with
baryon number can stably exist. For the observables, we
obtain the masses and the charge-to-baryon number ratios of the strangelets.
These quantities are compared with the observed data of the exotic particles.Comment: 10 pages, 9 figures, submitted to Physical Review
eta-Nucleus interactions and in-medium properties of N*(1535) in chiral models
The properties of eta-nucleus interaction and their experimental consequences
are investigated with eta-nucleus optical potentials obtained by postulating
the N*(1535) dominance for eta-N system. The N*(1535) properties in nuclear
medium are evaluated by two kinds of chiral effective models based on distinct
pictures of N*(1535). We find that these two models provide qualitatively
different optical potentials of the eta meson, reflecting the in-medium
properties of N*(1535) in these models. In order to compare these models in
physical observables, we calculate spectra of (d,3He) reactions for the eta
mesic nucleus formation with various kinds of target nuclei. We show that the
(d,3He) spectra obtained in these models are significantly different and are
expected to be distinguishable in experiments.Comment: 24 pages, 8 figure
Postbounce evolution of core-collapse supernovae: Long-term effects of equation of state
We study the evolution of supernova core from the beginning of gravitational
collapse of a 15Msolar star up to 1 second after core bounce. We present
results of spherically symmetric simulations of core-collapse supernovae by
solving general relativistic neutrino-radiation-hydrodynamics in the implicit
time-differencing. We aim to explore the evolution of shock wave in a long term
and investigate the formation of protoneutron star together with supernova
neutrino signatures. These studies are done to examine the influence of
equation of state (EOS) on the postbounce evolution of shock wave in the late
phase and the resulting thermal evolution of protoneutron star. We make a
comparison of two sets of EOS, that is, by Lattimer and Swesty (LS-EOS) and by
Shen et al.(SH-EOS). We found that, for both EOSs, the core does not explode
and the shock wave stalls similarly in the first 100 milliseconds after bounce.
The revival of shock wave does not occur even after a long period in either
cases. However, the recession of shock wave appears different beyond 200
milliseconds after bounce, having different thermal evolution of central core.
A more compact protoneutron star is found for LS-EOS than SH-EOS with a
difference in the central density by a factor of ~2 and a difference of ~10 MeV
in the peak temperature. Resulting spectra of supernova neutrinos are different
to the extent that may be detectable by terrestrial neutrino detectors.Comment: 28 pages, 17 figures, accepted by Astrophysical Journa
Spurious Shell Closures in the Relativistic Mean Field Model
Following a systematic theoretical study of the ground-state properties of
over 7000 nuclei from the proton drip line to the neutron drip line in the
relativistic mean field model [Prog. Theor. Phys. 113 (2005) 785], which is in
fair agreement with existing experimental data, we observe a few spurious shell
closures, i.e. proton shell closures at Z=58 and Z=92. These spurious shell
closures are found to persist in all the effective forces of the relativistic
mean field model, e.g. TMA, NL3, PKDD and DD-ME2.Comment: 3 pages, to appear in Chinese Physics Letter
Where is the pseudoscalar glueball ?
The pseudoscalar mesons with the masses higher than 1 GeV are assumed to
belong to the meson decuplet including the glueball as the basis state
supplementing the standard nonet of light states
. The decuplet is investigated by means of an algebraic approach based
on hypothesis of vanishing the exotic commutators of "charges" and
their time derivatives. These commutators result in a system of equations
determining contents of the isoscalar octet state in the physical isoscalar
mesons as well as the mass formula including all masses of the decuplet:
, K(1460), , and . The physical
isoscalar mesons , are expressed as superpositions of the "ideal"
states ( and ) and the glueball with the mixing
coefficient matrix following from the exotic commutator restrictions. Among
four one-parameter families of the calculated mixing matrix (numerous solutions
result from bad quality of data on the and K(1460) masses) there is
one family attributing the glueball-dominant composition to the
meson. Similarity between the pseudoscalar and scalar decuplets, analogy
between the whole spectra of the and mesons and affinity of
the glueball with excited states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors
withdraws his nam
A systematic study of Zr and Sn isotopes in the Relativistic Mean Field theory
The ground-state properties of Zr and Sn isotopes are studied within the
relativistic mean field theory. Zr and Sn isotopes have received tremendous
attention due to various reasons, including the predicted giant halos in the
neutron-rich Zr isotopes, the unique feature of being robustly spherical in the
region of Sn Sn and the particular interest of Sn
isotopes to nuclear astrophysics. Furthermore, four (semi-) magic neutron
numbers, 40, 50, 82 and 126, make these two isotopic chains particularly
important to test the pairing correlations and the deformations in a
microscopic model. In the present work, we carry out a systematic study of Zr
and Sn isotopes from the proton drip line to the neutron drip line with
deformation effects, pairing correlations and blocking effects for nuclei with
odd number of neutrons properly treated. A constrained calculation with
quadrupole deformations is performed to find the absolute minimum for each
nucleus on the deformation surface. All ground-state properties, including the
separation energies, the odd-even staggerings, the nuclear radii, the
deformations and the single-particle spectra are analyzed and discussed in
detail.Comment: the final version to appear in Modern Physics Letters A. more
figures, discussions, and references added. the data remain unchange
- âŠ