81 research outputs found

    Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas

    Get PDF
    We conducted a phase II trial to evaluate the efficacy and toxicity of radiotherapy immediately after hyperbaric oxygenation (HBO) with chemotherapy in adults with high-grade gliomas. Patients with histologically confirmed high-grade gliomas were administered radiotherapy in daily 2 Gy fractions for 5 consecutive days per week up to a total dose of 60 Gy. Each fraction was administered immediately after HBO with the period of time from completion of decompression to irradiation being less than 15 min. Chemotherapy consisted of procarbazine, nimustine (ACNU) and vincristine and was administered during and after radiotherapy. A total of 41 patients (31 patients with glioblastoma and 10 patients with grade 3 gliomas) were enrolled. All 41 patients were able to complete a total radiotherapy dose of 60 Gy immediately after HBO with one course of concurrent chemotherapy. Of 30 assessable patients, 17 (57%) had an objective response including four CR and 13 PR. The median time to progression and the median survival time in glioblastoma patients were 12.3 months and 17.3 months, respectively. On univariate analysis, histologic grade (P=0.0001) and Karnofsky performance status (P=0.036) had a significant impact on survival, and on multivariate analysis, histologic grade alone was a significant prognostic factor for survival (P=0.001). Although grade 4 leukopenia and grade 4 thrombocytopenia occurred in 10 and 7% of all patients, respectively, these were transient with no patients developing neutropenic fever or intracranial haemorrhage. No serious nonhaematological or late toxicities were seen. These results indicated that radiotherapy delivered immediately after HBO with chemotherapy was safe with virtually no late toxicity in patients with high-grade gliomas. Further studies are required to strictly evaluate the effectiveness of radiotherapy after HBO for these tumours

    Geometry and bias dependence of low-frequency random telegraph signal and 1/f noise levels in mosfets

    No full text
    Low-frequency noise in MOSFETs is considered to originate from two distinctive sources: Random Telegraph Signal caused by carrier traps at the border of the SiO2/Si interface and 1/f fluctuation due to inherent nature of lattice scattering in a Si crystal. It is very important to distinguish these two mechanisms. Relative amplitude of RTS and 1/f noise depends on the number of carriers under the gate electrode, which makes it channel size as well as gate-bias dependent. In this paper, we discuss the dependence of the amplitudes of RTS and 1/f noise in MOSFETs on sample geometry and gate bias condition. We discuss low-frequency noise reduction by utilizing low electron-temperature plasma for gate oxidation as well

    Global challenges of radiotherapy for the treatment of locally advanced cervical cancer.

    No full text
    Cervical cancer represents a significant portion of the global cancer burden for women, with low- and middle-income countries carrying the bulk of this burden. Additionally, underserved populations in countries with sufficient resources may have a higher incidence of cervical cancer and poorer outcomes. Concurrent chemoradiotherapy is the standard-of-care treatment for locally advanced cervical cancer, which includes patients with stage IB3 to IVA disease, and it is effective for many patients; however, cervical cancer-related mortality remains high. The critical nature of cervical cancer treatment is underscored by the recent launch of the World Health Organization global initiative to accelerate the elimination of cervical cancer using a triple-intervention strategy of increased vaccination, screening, and treatment. The initiative calls for 90% of all patients diagnosed with cervical cancer to receive the appropriate treatment, but to reach this global goal there are significant barriers related to radiotherapy that must be addressed. We discuss and review evidence of the lack of adherence to guideline-recommended treatment, brachytherapy underutilization, limited access to radiotherapy in low- and middle-income countries, as well as regional limitations within high-income countries, as the major barriers to radiotherapy treatment for locally advanced cervical cancer. We further review ways these barriers are currently being addressed and, in some cases, make additional recommendations to address these issues. Finally, despite receiving recommended treatments, many patients with locally advanced cervical cancer have a poor prognosis. With effective administration of current standards of care, the global community will be able to shift focus to advancing treatment efficacy for these patients. We review several types of therapies under clinical investigation that are additions to concurrent chemoradiotherapy, including immune checkpoint inhibitors, antiangiogenic agents, DNA repair inhibitors, human papillomavirus vaccines, and radiosensitizing nanoparticles
    corecore