91 research outputs found

    Nonlinear programming without a penalty function or a filter

    Get PDF
    A new method is introduced for solving equality constrained nonlinear optimization problems. This method does not use a penalty function, nor a barrier or a filter, and yet can be proved to be globally convergent to first-order stationary points. It uses different trust-regions to cope with the nonlinearities of the objective function and the constraints, and allows inexact SQP steps that do not lie exactly in the nullspace of the local Jacobian. Preliminary numerical experiments on CUTEr problems indicate that the method performs well

    Exploiting problem structure in derivative free optimization

    Get PDF
    A structured version of derivative-free random pattern search optimization algorithms is introduced which is able to exploit coordinate partially separable structure (typically associated with sparsity) often present in unconstrained and bound-constrained optimization problems. This technique improves performance by orders of magnitude and makes it possible to solve large problems that otherwise are totally intractable by other derivative-free methods. A library of interpolation-based modelling tools is also described, which can be associated to the structured or unstructured versions of the initial pattern search algorithm. The use of the library further enhances performance, especially when associated with structure. The significant gains in performance associated with these two techniques are illustrated using a new freely-available release of the BFO (Brute Force Optimizer) package firstly introduced in [Porcelli,Toint, ACM TOMS, 2017], which incorporates them. An interesting conclusion of the numerical results presented is that providing global structural information on a problem can result in significantly less evaluations of the objective function than attempting to building local Taylor-like models

    Approximate norm descent methods for constrained nonlinear systems

    Get PDF

    Recursive Trust-Region Methods for Multiscale Nonlinear Optimization

    Full text link
    corecore