21 research outputs found

    Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture

    Get PDF
    BACKGROUND: The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. METHODS: GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. RESULTS: In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. CONCLUSIONS: This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12935-014-0108-6) contains supplementary material, which is available to authorized users

    Inhibitory effect of HGF on invasiveness of aggressive MDA-MB231 breast carcinoma cells, and role of HDACs

    Get PDF
    Hepatocyte growth factor (HGF), through Met receptor binding, fulfils numerous functions in invasive tumour growth (survival/proliferation, motility, apoptosis), but epigenetic control of gene expression in this process is poorly understood. In HGF-treated breast cancer cells we studied (a) the chemoinvasion towards CXCL12 (ligand of the chemokine-receptor CXCR4) and (b) the mechanistic basis, that is, the transduction pathways that regulate CXCR4-mediated invasion, and the role played by histone deacetylases (HDACs) after blockade with trichostatin A (TSA). In highly invasive and metastatic MDA-MB231 cells HGF had a dual inhibitory effect, reducing spontaneous migration and specific chemoinvasion towards CXCL12, the latter by decreasing CXCR4 transactivation and protein level. After HGF the levels of phosphorylated (therefore active) c-Src and Akt persistently increased, indicating a role of these signal transducers in the HGF-dependent cellular and molecular effects. c-Src wild-type expression vector (Srcwt) increased active c-Src and mimicked the HGF-dependent inhibition of CXCR4 transactivation. Our findings indicate that HDACs participated in the HGF-inhibitory effects. In fact, blockade of HDACs hindered the HGF- and Srcwt-dependent reductions of CXCR4 transactivation and invasiveness, while inhibition of endogenous c-Src was additive with HGF, further reducing specific chemoinvasion. In conclusion, in MDA-MB231 cells HDAC blockade with TSA partly counteracted the HGF-dependent effects through molecular events that included enhancement of the expression of the genes for invasiveness Met and CXCR4 (depending on serum conditions), reduction of endogenous phospho-c-Src/c-Src and phosphoAkt/Akt ratios and triggering of apoptosis. The potential therapeutic use of TSA should take into account the variable aggressiveness of breast carcinoma cells and microenvironment signals such as HGF at the secondary growth site of the tumour. It was interesting that HGF reduced motility and CXCR4 functionality only of MDA-MB231 cells, and not of low-invasive MCF-7 cells, suggesting a mechanism implicated in metastatic cell homing

    La radiothérapie induit-elle une agressivité accrue des cellules tumorales du glioblastome ?

    No full text
    International audienceGlioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy

    Radiation-enhanced cell migration/invasion process: A review

    No full text
    International audienceRadiation therapy is a keystone treatment in cancer. Photon radiation has proved its benefits in overall survival in many clinical studies. However, some patients present local recurrences or metastases when cancer cells survive to treatment. Metastasis is a process which includes adhesion of the cell to the extracellular matrix, degradation of the matrix by proteases, cell motility, intravasation in blood or lymphatic vessels, extravasation in distant parenchyma and development of cell colonies. Several studies demonstrated that ionizing radiation might promote migration and invasion of tumor cells by intricate implications in the micro-environment, cell-cell junctions, extracellular matrix junctions, proteases secretion, and induction of epithelial-mesenchymal transition. This review reports various cellular pathways involved in the photon-enhanced cell invasion process for which potential therapeutic target may be employed for enhancing antitumor effectiveness. Understanding these mechanisms could lead to therapeutic strategies to counter the highly invasive cell lines via specific inhibitors or carbon-ion therapy

    Pregnancy and its role in breast cancer

    Get PDF
    Abstract Early full-term pregnancy is the only recognized factor able to prevent breast cancer. There are several hypotheses to explain the mechanisms of this protection, namely an altered hormonal milieu, a differentiation process or a switch in stem cell properties. To explore them, authors have been using animal models, mainly in rodents. Hormonal administration with estrogen and progesterone was the most widely used process to mimic the mammary changes during pregnancy. We have recently proposed that this enigmatic protective role of a full-term birth in breast cancer is carried out by tumor inhibition mediated by differentiated mammary epithelial cells. This explanation may give a new perspective of breast cancer prevention and treatment

    Interaction between estrogen receptor alpha, ionizing radiation and (anti-) estrogens in breast cancer cells.

    No full text
    PURPOSE: Estrogen receptor alpha (ERalpha) plays a major role in breast cancer development. It acts as ligand-inducible transcription factor which determines growth, survival and differentiation of breast cancer cells. The aim of this study is to evaluate the potential interference between radiotherapy and estrogen receptor responsiveness. Materials and methods. The effect of ionizing radiation was assessed on the estrogen receptor alpha status, growth (proliferation and apoptosis) and sensitivity of MCF-7 breast cancer cells to estrogenic (17beta-estradiol (E2)), selective estrogen receptor modulator (SERM) and anti-estrogenic compounds. Results. We have observed a ligand-independent decrease in ERalpha expression after radiation, resulting from a specific reduction in mRNA level and protein synthesis. This ERalpha disappearance occurred 72 h post-irradiation at 8 Gy and decreased the transcriptional activity in ERalpha of these cells. On the other hand, E2 impedes the growth inhibitory effects (essentially on proliferation) of ionizing radiation in MCF-7 cells, which potentially decreases radiosensitivity of these cells. This effect was totally blocked by SERM and anti-estrogenic treatments. Moreover, this growth effect of concurrent anti-estrogenic drugs and ionizing radiation appeared to be strongly synergistic. CONCLUSIONS: This study may increase general comprehension of ERalpha modulation by radiotherapy and improve adjuvant therapeutic approaches based on co-administration of radiation and endocrine therapy.Evaluation StudiesJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore