578 research outputs found

    Superfluidity, Sound Velocity and Quasi Condensation in the 2D BCS-BEC Crossover

    Full text link
    We study finite-temperature properties of a two-dimensional superfluid made of ultracold alkali-metal atoms in the BCS-BEC crossover. We investigate the region below the critical temperature TBKTT_{BKT} of the Berezinskii-Kosterlitz-Thouless phase transition, where there is quasi-condensation, by analyzing the effects of phase and amplitude fluctuations of the order parameter. In particular, we calculate the superfluid fraction, the sound velocity and the quasi-condensate fraction as a function of the temperature and of the binding energy of fermionic pairs.Comment: 7 pages, 4 figures, improved version to be published in Phys. Rev.

    Collisionless Dynamics in Two-Dimensional Bosonic Gases

    Full text link
    We study the dynamics of dilute and ultracold bosonic gases in a quasi two-dimensional (2D) configuration and in the collisionless regime. We adopt the 2D Landau-Vlasov equation to describe a three-dimensional gas under very strong harmonic confinement along one direction. We use this effective equation to investigate the speed of sound in quasi 2D bosonic gases, i.e. the sound propagation around a Bose-Einstein distribution in collisionless 2D gases. We derive coupled algebraic equations for the real and imaginary parts of the sound velocity, which are then solved taking also into account the equation of state of the 2D bosonic system. Above the Berezinskii-Kosterlitz-Thouless critical temperature we find that there is rapid growth of the imaginary component of the sound velocity which implies a strong Landau damping. Quite remarkably, our theoretical results are in good agreement with very recent experimental data obtained with a uniform 2D Bose gas of 87^{87}Rb atoms.Comment: 5 pages, 2 figures, improved introduction and conclusions, accepted for publication in Physical Review

    Emulation of lossless exciton-polariton condensates by dual-core optical waveguides: Stability, collective modes, and dark solitons

    Full text link
    We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion (GVD) point, and the other core being linear and dispersive. Both 2D and 1D EP systems may be emulated by means of this optical setting. In the framework of this system, we find that, while the uniform state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations, the upper branch is always subject to the modulational instability (MI). The stability and instability are verified by direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound velocity and energy gap. The effect of a uniform phase gradient (superflow) on the stability is considered too, with a conclusion that the lower-branch state becomes unstable above a critical wavenumber of the flux. Finally, we demonstrate that the stable 1D state may carry robust dark solitons.Comment: 11 pages, 9 figures, to appear in Phys. Rev.

    Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles

    Full text link
    It is well known that the category of super Lie groups (SLG) is equivalent to the category of super Harish-Chandra pairs (SHCP). Using this equivalence, we define the category of unitary representations (UR's) of a super Lie group. We give an extension of the classical inducing construction and Mackey imprimitivity theorem to this setting. We use our results to classify the irreducible unitary representations of semidirect products of super translation groups by classical Lie groups, in particular of the super Poincar\'e groups in arbitrary dimension. Finally we compare our results with those in the physical literature on the structure and classification of super multiplets.Comment: 55 pages LaTeX, some corrections added after comments by Prof. Pierre Delign

    Beliaev damping of the Goldstone mode in atomic Fermi superfluids

    Get PDF
    Beliaev damping in a superfluid is the decay of a collective excitation into two lower frequency collective excitations; it represents the only decay mode for a bosonic collective excitation in a superfluid at T = 0. The standard treatment for this decay assumes a linear spectrum, which in turn implies that the final state momenta must be collinear to the initial state. We extend this treatment, showing that the inclusion of a gradient term in the Hamiltonian yields a realistic spectrum for the bosonic excitations; we then derive a formula for the decay rate of such excitations, and show that even moderate nonlinearities in the spectrum can yield substantial deviations from the standard result. We apply our result to an attractive Fermi gas in the BCS-BEC crossover: here the low-energy bosonic collective excitations are density oscillations driven by the phase of the pairing order field. These collective excitations, which are gapless modes as a consequence of the Goldstone mechanism, have a spectrum which is well established both theoretically and experimentally, and whose linewidth, we show, is determined at low temperatures by the Beliaev decay mechanism.Comment: 8 pages, 3 figure

    Positive operator valued measures covariant with respect to an irreducible representation

    Full text link
    Given an irreducible representation of a group G, we show that all the covariant positive operator valued measures based on G/Z, where Z is a central subgroup, are described by trace class, trace one positive operators.Comment: 9 pages, Latex2

    Competition between symmetry breaking and onset of collapse in weakly coupled atomic condensates

    Full text link
    We analyze the symmetry breaking of matter-wave solitons in a pair of cigar-shaped traps coupled by tunneling of atoms. The model is based on a system of linearly coupled nonpolynomial Schr\"odinger equations (NPSEs). Unlike the well-known spontaneous-symmetry-breaking (SSB) bifurcation in coupled cubic equations, in the present model the SSB competes with the onset of collapse in this system. Stability regions of symmetric and asymmetric solitons, as well as the collapse region, are identified in the parameter space of the system.Comment: Physical Review A, in pres

    On the morphology and botanical affinities of Lundbladispora balme 1963 in the permian of the Paraná basin, Brazil

    Get PDF
    Morphological variations observed in specimens so far identifield as Lundbladispora braziliensis (PANT & SRIVASTAVA) MARQUES-TOIGO & PONS 1974, have led to the identification of one more species for the genus: Lundbladispora riobonitensis sp. nov. Both species constitute frequent and characteristic forms in the southern Brazilian Gondwana coals. Possible affinities of these miospores with the Selaginellales are also discussedVariações morfológicas observadas em espécimens até então identificadas como Lundbladispora braziliensis (PANT & SRIVASTAVA) MARQUES-TOIGO & PONS 1974, levaram a identificação de mais uma espécie para o gênero: Lundbladispora riobonitensis sp. nov. As espécies constituem formas freqüentes e características nos carvões Gondwânicos Sul-brasileiros. Também são discutidas possíveis afinidades desses miosporos com Selaginellale

    Normal completely positive maps on the space of quantum operations

    Full text link
    Quantum supermaps are higher-order maps transforming quantum operations into quantum operations. Here we extend the theory of quantum supermaps, originally formulated in the finite dimensional setting, to the case of higher-order maps transforming quantum operations with input in a separable von Neumann algebra and output in the algebra of the bounded operators on a given separable Hilbert space. In this setting we prove two dilation theorems for quantum supermaps that are the analogues of the Stinespring and Radon-Nikodym theorems for quantum operations. Finally, we consider the case of quantum superinstruments, namely measures with values in the set of quantum supermaps, and derive a dilation theorem for them that is analogue to Ozawa's theorem for quantum instruments. The three dilation theorems presented here show that all the supermaps defined in this paper can be implemented by connecting devices in quantum circuits.Comment: 47 pages (in one-column format), including new results about quantum operations on separable von Neumann algebra
    corecore