6 research outputs found

    Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Get PDF
    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27−/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs) from wildtype and Fsp27−/− mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT) and white adipose tissue (WAT) and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27−/− mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27−/− and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27−/− mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1α were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27−/− mice. Remarkably, Fsp27−/− MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3). Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity

    Fat-specific Protein 27 Undergoes Ubiquitin-dependent Degradation Regulated by Triacylglycerol Synthesis and Lipid Droplet Formation*

    No full text
    The fat-specific protein 27 (Fsp27), a protein localized to lipid droplets (LDs), plays an important role in controlling lipid storage and mitochondrial activity in adipocytes. Fsp27-null mice display increased energy expenditure and are resistant to high fat diet-induced obesity and diabetes. However, little is known about how the Fsp27 protein is regulated. Here, we show that Fsp27 stability is controlled by the ubiquitin-dependent proteasomal degradation pathway in adipocytes. The ubiquitination of Fsp27 is regulated by three lysine residues located in the C-terminal region. Substitution of these lysine residues with alanines greatly increased Fsp27 stability and enhanced lipid storage in adipocytes. Furthermore, Fsp27 was stabilized and rapidly accumulated following treatment with β-agonists that induce lipolysis and fatty acid re-esterification in adipocytes. More importantly, Fsp27 stabilization was dependent on triacylglycerol synthesis and LD formation, because knockdown of diacylglycerol acyltransferase in adipocytes significantly reduced Fsp27 accumulation in adipocytes. Finally, we observed that increased Fsp27 during β-agonist treatment preferentially associated with LDs. Taken together, our data revealed that Fsp27 can be stabilized by free fatty acid availability, triacylglycerol synthesis, and LD formation. The stabilization of Fsp27 when free fatty acids are abundant further enhances lipid storage, providing positive feedback to regulate lipid storage in adipocytes

    Phenotype-driven precision oncology as a guide for clinical decisions one patient at a time

    No full text
    Treatment response in patient-derived models may serve as a biomarker for response in the clinic. Here, the authors use paired patient-derived mouse xenografts and patient-derived primary culture models from head and neck squamous cell carcinomas, including metastasis, as models for high-throughput screening of anti-cancer drugs
    corecore