94 research outputs found

    Finite-Size and Illumination Conditions Effects in All-Dielectric Metasurfaces

    Get PDF
    Dielectric metasurfaces have emerged as a promising alternative to their plasmonic counterparts due to lower ohmic losses, which hinder sensing applications and nonlinear frequency conversion, and their larger flexibility to shape the emission pattern in the visible regime. To date, the computational cost of full-wave numerical simulations has forced the exploitation of the Floquet theorem, which implies infinitely periodic structures, in designing such devices. In this work, we show the potential pitfalls of this approach when considering finite-size metasurfaces and beam-like illumination conditions, in contrast to the typical infinite plane-wave illumination compatible with the Floquet theorem

    Near to short wave infrared light generation through AlGaAs-on-insulator nanoantennas

    Get PDF
    AlGaAs-on-insulator (AlGaAs-OI) has recently emerged as a promising platform for nonlinear optics at the nanoscale. Among the most remarkable outcomes, second-harmonic generation (SHG) in the visible/near infrared spectral region has been demonstrated in AlGaAs-OI nanoantennas (NAs). In order to extend the nonlinear frequency generation towards the short wave infrared window, in this work we propose and demonstrate via numerical simulations difference frequency generation (DFG) in AlGaAs-OI NAs. The NA geometry is finely adjusted in order to obtain simultaneous optical resonances at the pump, signal and idler wavelengths, which results in an efficient DFG with conversion efficiencies up to 0.01%. Our investigation includes the study of the robustness against random variations of the NA geometry that may occur at fabrication stage. Overall, these outcomes identify what we believe to be a new potential and yet unexplored application of AlGaAs-OI NAs as compact devices for the generation and control of the radiation pattern in the near to short infrared spectral region

    Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures

    Get PDF
    Reconfigurable metasurfaces have recently gained a lot of attention in applications such as adaptive meta-lenses, hyperspectral imaging and optical modulation. This kind of metastructure can be obtained by an external control signal, enabling us to dynamically manipulate the electromagnetic radiation. Here, we theoretically propose an AlGaAs device to control the second harmonic generation (SHG) emission at nanoscale upon optimized optical heating. The asymmetric shape of the used meta-atom is selected to guarantee a predominant second harmonic (SH) emission towards the normal direction. The proposed structure is concurrently excited by a pump beam at a fundamental wavelength of 1540 nm and by a continuous wave (CW) control signal above the semiconductor band gap. The optical tuning is achieved by a selective optimization of meta-atoms SH phase, which is modulated by the control signal intensity. We numerically demonstrate that the heating induced in the meta-atoms by the CW pump can be used to dynamically tune the device properties. In particular, we theoretically demonstrate a SH beam steering of 8° with respect to the vertical axis for an optimized device with average temperature increase even below 90° C

    Optical limiting sensor based on multilayer optimization of Ag/VO2 phase changing material

    Get PDF
    An optical limiting sensor working in the infrared was developed to address the need for eye and sensor protection against laser threats. Metallic and dielectric photonic resonators (thin-film multilayers) incorporating phase-change-materials (PCM) like VO2 were simulated and experimentally realized, with optimization of the deposition procedure by RF magnetron sputtering at low temperature. For the first time, the silver is placed between the substrate and the VO2 , thus improving the device limiting performances. By maximizing the difference of transmittance between the ‘ON’ and the ‘OFF’ states at the standard light wavelength for telecom applications (1550 nm), we calculated optimum thickness for VO2 and Ag films. The deposited thin films were characterized by SEM and Raman spectroscopy, and VO2 transition temperature was investigated by measuring resistance changes. As a proof of concept of the device working principle, we calculated transmittance drop of 70% when the sensor is exposed to a laser pulse excitation (20ps, 500 MW/cm^2 ). Our results pave the way for multilayer with optical limiting properties

    A GC-MS study on the deterioration of lipidic paint binders

    No full text
    This paper presents a study on the degradation of lipidic paint binders induced by irradiation with UV light (365 nm), exposure to urban air pollutants such as NOx and SO2 and combinations of the various treatments. The characterisation of lipidic binders has been performed by a GC-MS procedure on a series of non-pigmented paint specimens prepared at the Opificio delle Pietre Dure-Firenze (Italy) and submitted to accelerated ageing. The results show that UV irradiation and exposure to NOx and SO2 increased the polymerisation and cross-linking of the paint thus facilitating the cleavage of fatty acid chains as a result of progressed oxidation up to the formation of oxalic acid. The presence of oxalic, malonic, succinic, glutaric, adipic, pimelic, OH-octadecenoic acids and cholestenes describes the behaviour of aged paint layers. In samples of paintings by Cimabue, Raffaello and Boucher, oxalic acid and oxidised carboxylic acids have been found, confirming the results obtained in the paint specimens

    On the capability of evolved spambots to evade detection via genetic engineering

    No full text
    Since decades, genetic algorithms have been used as an effective heuristic to solve optimization problems. However, in order to be applied, genetic algorithms may require a string-based genetic encoding of information, which severely limited their applicability when dealing with online accounts. Remarkably, a behavioral modeling technique inspired by biological DNA has been recently proposed – and successfully applied – for monitoring and detecting spambots in Online Social Networks. In this so-called digital DNA representation, the behavioral lifetime of an account is encoded as a sequence of characters, namely a digital DNA sequence. In a previous work, the authors proposed to create synthetic digital DNA sequences that resemble the characteristics of the digital DNA sequences of real accounts. The combination of (i) the capability to model the accounts’ behaviors as digital DNA sequences, (ii) the possibility to create synthetic digital DNA sequences, and (iii) the evolutionary simulations allowed by genetic algorithms, open up the unprecedented opportunity to study – and even anticipate – the evolutionary patterns of modern social spambots. In this paper, we experiment with a novel ad-hoc genetic algorithm that allows to obtain behaviorally evolved spambots. By varying the different parameters of the genetic algorithm, we are able to evaluate the capability of the evolved spambots to escape a state-of-art behavior-based detection technique. Notably, despite such detection technique achieved excellent performances in the recent past, a number of our spambot evolutions manage to escape detection. Our analysis, if carried out at large-scale, would allow to proactively identify possible spambot evolutions capable of evading current detection techniques

    Silicon metasurfaces with tunable electromagnetic resonances for nonlinear optical conversion

    No full text
    Dielectric metasurfaces sustain electromagnetic modes which can be exploited to enhance nonlinear frequency-conversion processes such as thirdharmonic generation. In this work we employ electron-beam lithography to fabricate silicon metasurfaces supporting electromagnetic resonances with different quality factors (Q), ruled by the geometry. This allows to investigate the trade-off between resonant enhancement and matching the spectral bandwidth of the ultrafast excitation source. Both experiments and simulations indicate that higher values of Q do not a priori bring about a stronger third-harmonic generation, which correlates to the spectral overlap between the metasurface resonance and the pump bandwidth
    • …
    corecore