8 research outputs found

    Identification of diabetes susceptibility loci in db mice by combined quantitative trait loci analysis and haplotype mapping

    Get PDF
    To identify the disease-susceptibility genes of type 2 diabetes, we performed quantitative trait loci (QTL) analysis in F2 populations generated from a BKS.Cg-m+/+Leprdb and C3H/HeJ intercross, taking advantage of genetically determined obesity and diabetes traits associated with the db gene. A genome-wide scan in the F2 populations divided by sex and db genotypes identified 14 QTLs in total and 3 major QTLs on chromosome (Chr) 3 (LOD 5.78) for fat pad weight, Chr 15 (LOD 6.64) for body weight, and Chr 16 (LOD 8.15) for blood glucose concentrations. A linear-model-based genome scan using interactive covariates allowed us to consider sex- or sex-by db-specific effects of each locus. For the most significant QTL on Chr 16, the high-resolution haplotype comparison between BKS and C3H strains reduced the critical QTL interval from 20 to 4.6 Mb by excluding shared haplotype regions and identified 11 nonsynonymous single-nucleotide polymorphisms in six candidate genes

    Synaptopodin Protects Against Proteinuria by Disrupting Cdc42:IRSp53:Mena Signaling Complexes in Kidney Podocytes

    No full text
    The actin-based foot processes of kidney podocytes and the interposed slit diaphragm form the final barrier to proteinuria. Mutations affecting several podocyte proteins cause disruption of the filtration barrier and rearrangement of the highly dynamic podocyte actin cytoskeleton. Proteins regulating the plasticity of the podocyte actin cytoskeleton are therefore of critical importance for sustained kidney barrier function. Synaptopodin is an actin-associated protein essential for the integrity of the podocyte actin cytoskeleton because synaptopodin-deficient mice display impaired recovery from protamine sulfate-induced foot process effacement and lipopolysaccharide-induced nephrotic syndrome. Moreover, bigenic heterozygosity for synaptopodin and CD2AP is sufficient to induce spontaneous proteinuria and focal segmental glomerulosclerosis-like glomerular damage in mice. Mechanistically, synaptopodin induces stress fibers by blocking the proteasomal degradation of RhoA. Here we show that synaptopodin directly binds to IRSp53 and suppresses Cdc42:IRSp53:Mena-initiated filopodia formation by blocking the binding of Cdc42 and Mena to IRSp53. The Mena inhibitor FP4-Mito suppresses aberrant filopodia formation in synaptopodin knockdown podocytes, and when delivered into mice protects against lipopolysaccharide-induced proteinuria. The identification of synaptopodin as an inhibitor of Cdc42:IRSp53:Mena signaling defines a novel antiproteinuric signaling pathway and offers new targets for the development of antiproteinuric therapeutic modalities

    Abstracts of the Eighth Annual Meeting of the Japanese Society for Bone Metabolism Research

    No full text
    corecore