22 research outputs found

    The Effect of Medicaid Expansion on Utilization in Maryland Emergency Departments

    Get PDF
    Study objective A proposed benefit of expanding Medicaid eligibility under the Patient Protection and Affordable Care Act (ACA) was a reduction in emergency department (ED) utilization for primary care needs. Pre-ACA studies found that new Medicaid enrollees increased their ED utilization rates, but the effect on system-level ED visits was less clear. Our objective was to estimate the effect of Medicaid expansion on aggregate and individual-based ED utilization patterns within Maryland. Methods We performed a retrospective cross-sectional study of ED utilization patterns across Maryland, using data from Maryland’s Health Services Cost Review Commission. We also analyzed utilization differences between pre-ACA (July 2012 to December 2013) uninsuredpatients who returned post-ACA (July 2014 to December 2015). Results The total number of ED visits in Maryland decreased by 36,531 (–1.2%) between the 6 quarters pre-ACA and the 6 quarters post-ACA. Medicaid-covered ED visits increased from 23.3% to 28.9% (159,004 additional visits), whereas uninsured patient visits decreased from 16.3% to 10.4% (181,607 fewer visits). Coverage by other insurance types remained largely stable between periods. We found no significant relationship between Medicaid expansion and changes in ED volume by hospital. For patients uninsured pre-ACA who returned post-ACA, the adjusted visits per person during 6 quarters was 2.38 (95% confidence interval 2.35 to 2.40) for those newly enrolled in Medicaid post-ACA compared with 1.66 (95% confidence interval 1.64 to 1.68) for those remaining uninsured. Conclusion There was a substantial increase in patients covered by Medicaid in the post-ACA period, but this did not significantly affect total ED volume. Returning patients newly enrolled in Medicaid visited the ED more than their uninsured counterparts; however, this cohort accounted for only a small percentage of total ED visits in Maryland

    Modelling interventions and contact networks to reduce the spread of carbapenem-resistant organisms between individuals in the ICU

    Get PDF
    Background: Contact precautions are widely used to prevent the transmission of carbapenem-resistant organisms (CROs) in hospital wards. However, evidence for their effectiveness in natural hospital environments is limited. Objective: To determine which contact precautions, healthcare worker (HCW)–patient interactions, and patient and ward characteristics are associated with greater risk of CRO infection or colonization. Design, setting and participants: CRO clinical and surveillance cultures from two high-acuity wards were assessed through probabilistic modelling to characterize a susceptible patient's risk of CRO infection or colonization during a ward stay. User- and time-stamped electronic health records were used to build HCW-mediated contact networks between patients. Probabilistic models were adjusted for patient (e.g. antibiotic administration) and ward (e.g. hand hygiene compliance, environmental cleaning) characteristics. The effects of risk factors were assessed by adjusted odds ratio (aOR) and 95% Bayesian credible intervals (CrI). Exposures: The degree of interaction with CRO-positive patients, stratified by whether CRO-positive patients were on contact precautions. Main outcomes and measures: The prevalence of CROs and number of new carriers (i.e. incident CRO aquisition). Results: Among 2193 ward visits, 126 (5.8%) patients became colonized or infected with CROs. Susceptible patients had 4.8 daily interactions with CRO-positive individuals on contact precautions (vs 1.9 interactions with those not on contact precautions). The use of contact precautions for CRO-positive patients was associated with a reduced rate (7.4 vs 93.5 per 1000 patient-days at risk) and odds (aOR 0.03, 95% CrI 0.01–0.17) of CRO acquisition among susceptible patients, resulting in an estimated absolute risk reduction of 9.0% (95% CrI 7.6–9.2%). Also, carbapenem administration to susceptible patients was associated with increased odds of CRO acquisition (aOR 2.38, 95% CrI 1.70–3.29). Conclusions and relevance: In this population-based cohort study, the use of contact precautions for patients colonized or infected with CROs was associated with lower risk of CRO acquisition among susceptible patients, even after adjusting for antibiotic exposure. Further studies that include organism genotyping are needed to confirm these findings

    Critical resources for hospital surge capacity: an expert consensus panel

    No full text
    Background: Hospital surge capacity (HSC) is dependent on the ability to increase or conserve resources. The hospital surge model put forth by the Agency for Healthcare Research and Quality (AHRQ) estimates the resources needed by hospitals to treat casualties resulting from 13 national planning scenarios. However, emergency planners need to know which hospital resource are most critical in order to develop a more accurate plan for HSC in the event of a disaster. Objective: To identify critical hospital resources required in four specific catastrophic scenarios; namely, pandemic influenza, radiation, explosive, and nerve gas. Methods: We convened an expert consensus panel comprised of 23 participants representing health providers (i.e., nurses and physicians), administrators, emergency planners, and specialists. Four disaster scenarios were examined by the panel. Participants were divided into 4 groups of five or six members, each of which were assigned two of four scenarios. They were asked to consider 132 hospital patient care resources- extracted from the AHRQ's hospital surge model- in order to identify the ones that would be critical in their opinion to patient care. The definition for a critical hospital resource was the following: absence of the resource is likely to have a major impact on patient outcomes, i.e., high likelihood of untoward event, possibly death. For items with any disagreement in ranking, we conducted a facilitated discussion (modified Delphi technique) until consensus was reached, which was defined as more than 50% agreement. Intraclass Correlation Coefficients (ICC) were calculated for each scenario, and across all scenarios as a measure of participant agreement on critical resources. For the critical resources common to all scenarios, Kruskal-Wallis test was performed to measure the distribution of scores across all scenarios. Results: Of the 132 hospital resources, 25 were considered critical for all four scenarios by more than 50% of the participants. The number of hospital resources considered to be critical by consensus varied from one scenario to another; 58 for the pandemic influenza scenario, 51 for radiation exposure, 41 for explosives, and 35 for nerve gas scenario. Intravenous crystalloid solution was the only resource ranked by all participants as critical across all scenarios. The agreement in ranking was strong in nerve agent and pandemic influenza (ICC= 0.7 in both), and moderate in explosives (ICC= 0.6) and radiation (ICC= 0.5). Conclusion: In four disaster scenarios, namely, radiation, pandemic influenza, explosives, and nerve gas scenarios; supply of as few as 25 common resources may be considered critical to hospital surge capacity. The absence of any these resources may compromise patient care. More studies are needed to identify critical hospital resources in other disaster scenarios
    corecore