47 research outputs found

    Functional brain connectomes reflect acute and chronic cannabis use

    No full text
    Resting state fMRI has been employed to identify alterations in functional connectivity within or between brain regions following acute and chronic exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive component in cannabis. Most studies focused a priori on a limited number of local brain areas or circuits, without considering the impact of cannabis on whole-brain network organization. The present study attempted to identify changes in the whole-brain human functional connectome as assessed with ultra-high field (7T) resting state scans of cannabis users (N = 26) during placebo and following vaporization of cannabis. Two distinct data-driven methodologies, i.e. network-based statistics (NBS) and connICA, were used to identify changes in functional connectomes associated with acute cannabis intoxication and history of cannabis use. Both methodologies revealed a broad state of hyperconnectivity within the entire range of major brain networks in chronic cannabis users compared to occasional cannabis users, which might be reflective of an adaptive network reorganization following prolonged cannabis exposure. The connICA methodology also extracted a distinct spatial connectivity pattern of hypoconnectivity involving the dorsal attention, limbic, subcortical and cerebellum networks and of hyperconnectivity between the default mode and ventral attention network, that was associated with the feeling of subjective high during THC intoxication. Whole-brain network approaches identified spatial patterns in functional brain connectomes that distinguished acute from chronic cannabis use, and offer an important utility for probing the interplay between short and long-term alterations in functional brain dynamics when progressing from occasional to chronic use of cannabis

    Subjective aggression during alcohol and cannabis intoxication before and after aggression exposure

    Get PDF
    RATIONALE: Alcohol and cannabis use have been implicated in aggression. Alcohol consumption is known to facilitate aggression, whereas a causal link between cannabis and aggression has not been clearly demonstrated. OBJECTIVES: This study investigated the acute effects of alcohol and cannabis on subjective aggression in alcohol and cannabis users, respectively, following aggression exposure. Drug-free controls served as a reference. It was hypothesized that aggression exposure would increase subjective aggression in alcohol users during alcohol intoxication, whereas it was expected to decrease subjective aggression in cannabis users during cannabis intoxication. METHODS: Heavy alcohol (n = 20) and regular cannabis users (n = 21), and controls (n = 20) were included in a mixed factorial study. Alcohol and cannabis users received single doses of alcohol and placebo or cannabis and placebo, respectively. Subjective aggression was assessed before and after aggression exposure consisting of administrations of the point-subtraction aggression paradigm (PSAP) and the single category implicit association test (SC-IAT). Testosterone and cortisol levels in response to alcohol/cannabis treatment and aggression exposure were recorded as secondary outcome measures. RESULTS: Subjective aggression significantly increased following aggression exposure in all groups while being sober. Alcohol intoxication increased subjective aggression whereas cannabis decreased the subjective aggression following aggression exposure. Aggressive responses during the PSAP increased following alcohol and decreased following cannabis relative to placebo. Changes in aggressive feeling or response were not correlated to the neuroendocrine response to treatments. CONCLUSIONS: It is concluded that alcohol facilitates feelings of aggression whereas cannabis diminishes aggressive feelings in heavy alcohol and regular cannabis users, respectively

    A placebo-controlled study to assess Standardized Field Sobriety Tests performance during alcohol and cannabis intoxication in heavy cannabis users and accuracy of point of collection testing devices for detecting THC in oral fluid

    Get PDF
    RATIONALE: Standardized Field Sobriety Tests (SFST) and oral fluid devices are used to screen for driving impairment and roadside drug detection, respectively. SFST have been validated for alcohol, but their sensitivity to impairment induced by other drugs is relatively unknown. The sensitivity and specificity for Δ(9)-tetrahydrocannabinol (THC) of most oral fluid devices have been low. OBJECTIVE: This study assessed the effects of smoking cannabis with and without alcohol on SFST performance. Presence of THC in oral fluid was examined with two devices (Dräger Drug Test® 5000 and Securetec Drugwipe® 5). METHODS: Twenty heavy cannabis users (15 males and 5 females; mean age, 24.3 years) participated in a double-blind, placebo-controlled study assessing percentage of impaired individuals on the SFST and the sensitivity of two oral fluid devices. Participants received alcohol doses or alcohol placebo in combination with 400 μg/kg body weight THC. We aimed to reach peak blood alcohol concentration values of 0.5 and 0.7 mg/mL. RESULTS: Cannabis was significantly related to performance on the one-leg stand (p = 0.037). Alcohol in combination with cannabis was significantly related to impairment on horizontal gaze nystagmus (p = 0.029). The Dräger Drug Test® 5000 demonstrated a high sensitivity for THC, whereas the sensitivity of the Securetec Drugwipe® 5 was low. CONCLUSIONS: SFST were mildly sensitive to impairment from cannabis in heavy users. Lack of sensitivity might be attributed to tolerance and time of testing. SFST were sensitive to both doses of alcohol. The Dräger Drug Test® 5000 appears to be a promising tool for detecting THC in oral fluid as far as correct THC detection is concerned
    corecore