279 research outputs found

    Atom clusters and vibrational excitations in chemically-disordered Pt357Fe

    Get PDF
    Inelastic nuclear resonant scattering spectra of Fe-57 atoms were measured on crystalline alloys of Pt3Fe-57 that were chemically disordered, partially ordered, and L1(2) ordered. Phonon partial density of states curves for Fe-57 were obtained from these spectra. Upon disordering, about 10% of the spectral intensity underwent a distinct shift from 25 to 19 meV. This change in optical modes accounted for most of the change of the vibrational entropy of disordering contributed by Fe atoms, which was (+0.10 +/- 0.03) k(B) (Fe atom)(-1). Prospects for parametrizing the vibrational entropy with low-order cluster variables were assessed. To calculate the difference in vibrational entropy of the disordered and ordered alloys, the clusters must be large enough to account for the abundances of several of the atom configurations of the first-nearest-neighbor shell about the Fe-57 atoms

    Heterogeneous electron-transfer kinetics with synchrotron 57Fe Mossbauer spectroscopy

    Get PDF
    In the first known kinetic application of the technique, synchrotron 57Fe-Mössbauer spectroscopy was used to follow the rate of heterogeneous electron transfer between aqueous reagents and a solid phase containing Fe. The solid, a synthetic 57Fe-enriched Fe (III)-bearing pyroaurite-like phase having terephthalate (TA) in the interlayer [Mg3Fe (OH)8(TA)0.5 ‱ 2H2O], was reduced by Na2S2O4 and then reoxidized by K2Cr2O7 by means of a novel flow-through cell. Synchrotron Mössbauer spectra were collected in the time domain at 30-s intervals. Integration of the intensity obtained during a selected time interval in the spectra allowed sensitive determination of Fe(II) content as a function of reaction time. Analysis of reaction end member specimens by both the synchrotron technique and conventional Mössbauer spectroscopy yielded comparable values for Mössbauer parameters such as center shift and Fe (II)/Fe (III) area ratios. Slight differences in quadrupole splitting values were observed, however. A reactive diffusion model was developed that fit the experimental Fe(II) kinetic data well and allowed the extraction of second-order rate constants for each reaction. Thus, in addition to rapidly collecting high quality Mössbauer data, the synchrotron technique seems well suited for aqueous rate experiments as a result of the penetrating power of 14.4 keV X-rays and high sensitivity to Fe valence state

    Dynamics of iron atoms across the pressure-induced Invar transition in Pd_3Fe

    Get PDF
    The ^(57)Fe phonon partial density of states (PDOS) in L1_2-ordered Pd_3Fe was studied at high pressures by nuclear resonant inelastic x-ray scattering (NRIXS) measurements and density functional theory (DFT) calculations. The NRIXS spectra showed that the stiffening of the ^(57)Fe PDOS with decreasing volume was slower from 12 to 24 GPa owing to the pressure-induced Invar transition in Pd_3Fe, with a change from a high-moment ferromagnetic (FM) state to a low-moment (LM) state observed by nuclear forward scattering. Force constants obtained from fitting to a Born–von Kármán model showed a relative softening of the first-nearest-neighbor (1NN) Fe-Pd longitudinal force constants at the magnetic transition. For the FM low-pressure state, the DFT calculations gave a PDOS and 1NN longitudinal force constants in good agreement with experiment, but discrepancies for the high-pressure LM state suggest the presence of short-range magnetic order

    Strongly Anisotropic MagnesiowĂŒstite in Earth's Lower Mantle

    Get PDF
    The juxtaposition of a liquid iron‐dominant alloy against a mixture of silicate and oxide minerals at Earth's core‐mantle boundary is associated with a wide range of complex seismological features. One category of observed structures is ultralow‐velocity zones, which are thought to correspond to either aggregates of partially molten material or solid, iron‐enriched assemblages. We measured the phonon dispersion relations of (Mg,Fe) O magnesiowĂŒstite containing 76 mol % FeO, a candidate ultralow‐velocity zone phase, at high pressures using high‐energy resolution inelastic X‐ray scattering. From these measurements, we find that magnesiowĂŒstite becomes strongly elastically anisotropic with increasing pressure, potentially contributing to a significant proportion of seismic anisotropy detected near the base of the mantle

    Lactoferrin is a survival factor for neutrophils in rheumatoid synovial fluid

    Get PDF
    Objectives. Lactoferrin is an iron-binding protein that is released from activated neutrophils at sites of inflammation and has anti-microbial as well as anti-inflammatory properties. This study set out to determine whether lactoferrin can delay neutrophil apoptosis and could act as a survival factor for neutrophils in SF

    Measuring velocity of sound with nuclear resonant inelastic x-ray scattering

    Full text link
    Nuclear resonant inelastic x-ray scattering is used to measure the projected partial phonon density of states of materials. A relationship is derived between the low-energy part of this frequency distribution function and the sound velocity of materials. Our derivation is valid for harmonic solids with Debye-like low-frequency dynamics. This method of sound velocity determination is applied to elemental, composite, and impurity samples which are representative of a wide variety of both crystalline and noncrystalline materials. Advantages and limitations of this method are elucidated
    • 

    corecore