13 research outputs found

    A Commentary on the Efficacy of Olanzapine for the Treatment of Schizophrenia: The Past, Present, and Future

    No full text
    Olanzapine is a second-generation atypical antipsychotic with proven efficacy for the treatment of schizophrenia. Approved in 1996, olanzapine is one of the most studied antipsychotics, resulting in a considerable amount of clinical data across diverse patient populations. Despite the fact that olanzapine is associated with a known risk of metabolic side effects, including weight gain, many clinicians continue to prescribe olanzapine for the treatment of schizophrenia with the expectation of additional therapeutic antipsychotic efficacy relative to other first-line atypical antipsychotics. The goal of this narrative is to revisit the role of oral olanzapine in the management of patients with schizophrenia, including those with recently diagnosed schizophrenia ( first-episode ), those with an established schizophrenia diagnosis who experience acute exacerbations, those receiving long-term antipsychotic treatment as a maintenance intervention, and those with suboptimal response to antipsychotic treatment, including treatment resistance. Collectively, data from published literature support the favorable efficacy of olanzapine compared with other first- and second-generation antipsychotics, including lower rates of treatment discontinuation and clinically meaningful improvements in the symptoms of schizophrenia. The development of antipsychotic medications with the favorable efficacy of olanzapine, but with reduced weight gain, could address a major unmet need in the treatment of schizophrenia

    Opioid Antagonism Mitigates Antipsychotic-Associated Weight Gain: Focus on Olanzapine

    No full text
    BACKGROUND: The endogenous opioid system affects metabolism, including weight regulation. Evidence from preclinical and clinical studies provides a rationale for targeting this system to mitigate weight-related side effects of antipsychotics. This review describes the role of the opioid system in regulating weight and metabolism, examines the effects of opioid receptor antagonism on those functions, and explores the use of opioid antagonists to mitigate antipsychotic-associated weight gain and/or metabolic effects. METHODS: A PubMed literature search was conducted to identify representative opioid antagonists and associated preclinical and clinical studies examining their potential for the regulation of weight and metabolism. RESULTS: The mu opioid receptor (MOR), delta opioid receptor (DOR), and kappa opioid receptor (KOR) types have overlapping but distinct patterns of central and peripheral expression, and each contributes to the regulation of body weight and metabolism. Three representative opioid antagonists (eg, naltrexone, samidorphan, and LY255582) were identified for illustration. These opioid antagonists differed in their receptor binding and pharmacokinetic profiles, including oral bioavailability, systemic clearance, and half-life, and were associated with varying effects on food intake, energy utilization, and metabolic dysregulation. CONCLUSIONS: Preclinical and clinical data suggest that antagonism of the endogenous opioid system is a mechanism to address antipsychotic-associated weight gain and metabolic dysregulation. However, evidence suggests that the differing roles of MOR, DOR, and KOR in metabolism, together with the differences in receptor binding, pharmacokinetic, and functional activity profiles of the opioid receptor antagonists discussed in this review, likely contribute to their differential pharmacodynamic effects and clinical outcomes observed regarding antipsychotic-associated weight gain

    An Evidence-Based Review of OLZ/SAM for Treatment of Adults with Schizophrenia or Bipolar I Disorder

    No full text
    Olanzapine effectively treats schizophrenia and bipolar I disorder (BD-I); however, its use is limited by the risk of significant weight gain and metabolic effects. OLZ/SAM, a combination of olanzapine and samidorphan, was recently approved in the United States for the treatment of adults with schizophrenia or BD-I. OLZ/SAM provides the efficacy of olanzapine while mitigating olanzapine-associated weight gain through opioid-receptor blockade. Here, we summarize OLZ/SAM clinical data characterizing pharmacokinetics, antipsychotic efficacy, weight mitigation efficacy, safety, and long-term treatment effects. In an acute exacerbation of schizophrenia, OLZ/SAM and olanzapine provided similar symptom improvements versus placebo at week 4. In stable outpatients with schizophrenia, OLZ/SAM treatment resulted in significantly less weight gain, reducing the risk for clinically significant weight gain and waist circumference increases of ≥5 cm by half, compared with olanzapine at week 24. Based on open-label extension studies, OLZ/SAM is safe and well tolerated for up to 3.5 years of treatment, while maintaining schizophrenia symptom control and stabilizing weight. The olanzapine component of OLZ/SAM was bioequivalent to branded olanzapine (Zyprexa); adjunctive OLZ/SAM had no clinically significant effects on lithium or valproate pharmacokinetics. Additionally, OLZ/SAM had no clinically relevant effect on electrocardiogram parameters in a dedicated thorough QT study. Overall, safety and tolerability findings from clinical studies with OLZ/SAM indicate a similar safety profile to that of olanzapine, with the exception of less weight gain. As OLZ/SAM contains the opioid antagonist samidorphan, it is contraindicated in patients using opioids and in those undergoing acute opioid withdrawal. Clinical trial results from more than 1600 subjects support the use of OLZ/SAM as a new treatment option for patients with schizophrenia or BD-I

    Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars

    No full text
    GABAergic dysfunction is present in the hippocampus in schizophrenia (SZ) and bipolar disorder (BD). The trisynaptic pathway was “deconstructed” into various layers of sectors CA3/2 and CA1 and gene expression profiling performed. Network association analysis was used to uncover genes that may be related to regulation of glutamate decarboxylase 67 (GAD67), a marker for this system that has been found by many studies to show decreased expression in SZs and BDs. The most striking change was a down-regulation of GAD67 in the stratum oriens (SO) of CA2/3 in both groups; CA1 only showed changes in the SO of schizophrenics. The network generated for GAD67 contained 25 genes involved in the regulation of kainate receptors, TGF-β and Wnt signaling, as well as transcription factors involved in cell growth and differentiation. In SZs, IL-1β, (GRIK2/3), TGF-β2, TGF-βR1, histone deacetylase 1 (HDAC1), death associated protein (DAXX), and cyclin D2 (CCND2) were all significantly up-regulated, whereas in BDs, PAX5, Runx2, LEF1, TLE1, and CCND2 were significantly down-regulated. In the SO of CA1 of BDs, where GAD67 showed no expression change, TGF-β and Wnt signaling genes were all up-regulated, but other transcription factors showed no change in expression. In other layers/sectors, BDs showed no expression changes in these GAD67 network genes. Overall, these results are consistent with the hypothesis that decreased expression of GAD67 may be associated with an epigenetic mechanism in SZ. In BD, however, a suppression of transcription factors involved in cell differentiation may contribute to GABA dysfunction
    corecore