42 research outputs found

    Circulating Exosomal microRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer

    Get PDF
    Background: Neoadjuvant chemotherapy (NACT) is an increasingly used approach for treatment of breast cancer. The pathological complete response (pCR) is considered a good predictor of disease-specific survival. This study investigated whether circulating exosomal microRNAs could predict pCR in breast cancer patients treated with NACT. Method: Plasma samples of 20 breast cancer patients treated with NACT were collected prior to and after the first cycle. RNA sequencing was used to determine microRNA profiling. The Cancer Genome Atlas (TCGA) was used to explore the expression patterns and survivability of the candidate miRNAs, and their potential targets based on the expression levels and copy number variation (CNV) data. Results: Three miRNAs before that NACT (miR-30b, miR-328 and miR-423) predicted pCR in all of the analyzed samples. Upregulation of miR-127 correlated with pCR in triple-negative breast cancer (TNBC). After the first NACT dose, pCR was predicted by exo-miR-141, while miR-34a, exo-miR182, and exo-miR-183 predicted non-pCR. A significant correlation between the candidate miRNAs and the overall survival, subtype, and metastasis in breast cancer, suggesting their potential role as predictive biomarkers of pCR. Conclusions: If the miRNAs identified in this study are validated in a large cohort of patients, they might serve as predictive non-invasive liquid biopsy biomarkers for monitoring pCR to NACT in breast cancer

    Oral Glutamine Protects against Acute Doxorubicin-Induced Cardiotoxicity of Tumor-Bearing Rats

    No full text
    Doxorubicin (DOX), a widely used anticancer drug, has a dose-dependent cardiotoxicity, attributed mainly to free radical formation. The cardiomyocyte oxidative stress occurs rapidly after DOX treatment, resulting in harmful modifications to proteins, lipids, and DNA. Previous data showed that oral L-glutamine (Gln) prevented cardiac lipid peroxidation and maintained normal cardiac glutathione (GSH) levels in DOX-treated rats. Our aim in this study was to examine the effect of Gln on DOX-induced cardiac oxidative stress in a tumor-bearing host. Female Fisher344 rats with implanted MatBIII mammary tumors were randomized into 2 groups: a Gln group that received L-Gln (1 g.kg(-1).d(-1)) (n = 10) via a Gln-enriched diet and/or gavage with 50% Gln suspension during the whole experiment and a control group that was fed the same diet formulation without Gln and/or were gavaged with water. All rats received a single injection of 12 mg/kg DOX and were killed 3 d later. GSH levels of hearts, livers, tumors, and blood, as well as cardiac histological alterations, lipid peroxidation, peroxinitrite levels, and caspase-3 activation were determined. Cardiac physiologic alterations were assessed by ultrasound imaging before and 3 d after DOX administration. The Gln supplementation resulted in lower cardiac lipid peroxidation and peroxintrite levels and elevated cardiac catalase enzyme activity and GSH compared with the controls, without affecting those of the tumors. DOX-induced alterations of the echocardiographic parameters were significantly reduced in the Gln-supplemented rats. These data indicate that Gln is able to reduce the oxidative damage of cardiomyocytes that occurs soon after DOX administration and thus protects the heart of a tumor-bearing host from DOX-induced cardiomyopathy. J. Nutr. 140: 44-48, 2010

    Circulating Exosomal microRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer

    No full text
    Background: Neoadjuvant chemotherapy (NACT) is an increasingly used approach for treatment of breast cancer. The pathological complete response (pCR) is considered a good predictor of disease-specific survival. This study investigated whether circulating exosomal microRNAs could predict pCR in breast cancer patients treated with NACT. Method: Plasma samples of 20 breast cancer patients treated with NACT were collected prior to and after the first cycle. RNA sequencing was used to determine microRNA profiling. The Cancer Genome Atlas (TCGA) was used to explore the expression patterns and survivability of the candidate miRNAs, and their potential targets based on the expression levels and copy number variation (CNV) data. Results: Three miRNAs before that NACT (miR-30b, miR-328 and miR-423) predicted pCR in all of the analyzed samples. Upregulation of miR-127 correlated with pCR in triple-negative breast cancer (TNBC). After the first NACT dose, pCR was predicted by exo-miR-141, while miR-34a, exo-miR182, and exo-miR-183 predicted non-pCR. A significant correlation between the candidate miRNAs and the overall survival, subtype, and metastasis in breast cancer, suggesting their potential role as predictive biomarkers of pCR. Conclusions: If the miRNAs identified in this study are validated in a large cohort of patients, they might serve as predictive non-invasive liquid biopsy biomarkers for monitoring pCR to NACT in breast cancer

    Biomarkers for Presymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer Patients.

    No full text
    Cardiotoxicity of doxorubicin (DOX) remains an important health concern. DOX cardiotoxicity is cumulative-dose-dependent and begins with the first dose of chemotherapy. No biomarker for presymptomatic detection of DOX cardiotoxicity has been validated. Our hypothesis is that peripheral blood cells (PBC) gene expression induced by the early doses of DOX-based chemotherapy could identify potential biomarkers for presymptomatic cardiotoxicity in cancer patients. PBC gene expression of 33 breast cancer patients was conducted before and after the first cycle of DOX-based chemotherapy. Cardiac function was evaluated before the start of chemotherapy and at its completion. Differentially expressed genes (DEG) of patients who developed DOX-associated cardiotoxicity after the completion of chemotherapy were compared with DEG of patients who did not. Ingenuity database was used for functional analysis of DEG. Sixty-sevens DEG (P<0.05) were identified in PBC of patients with DOX-cardiotoxicity. Most of DEG encode proteins secreted by activated neutrophils. The functional analysis of the DEG showed enrichment for immune- and inflammatory response. This is the first study to identify the PBC transcriptome signature associated with a single dose of DOX-based chemotherapy in cancer patients. We have shown that PBC transcriptome signature associated with one dose of DOX chemotherapy in breast cancer can predict later impairment of cardiac function. This finding may be of value in identifying patients at high or low risk for the development of DOX cardiotoxicity during the initial doses of chemotherapy and thus to avoid the accumulating toxic effects from the subsequent doses during treatment

    Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer

    No full text
    Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings
    corecore