14 research outputs found

    In Vivo Monitoring of Parathyroid Hormone Treatment after Myocardial Infarction in Mice with [68Ga]Annexin A5 and [18F]Fluorodeoxyglucose Positron Emission Tomography

    Get PDF
    [68Ga]Annexin A5 positron emission tomography (PET) reveals the externalization of phosphatidylserine as a surrogate marker for apoptosis. We tested this technique for therapy monitoring in a murine model of myocardial infarction (MI) including parathyroid hormone (PTH) treatment. MI was induced in mice, and they were assigned to the saline or the PTH group. On day 2, they received [68Ga]annexin A5 PET or histofluorescence TUNEL staining. Mice had 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET examinations on days 6 and 30 for calculation of the left ventricular ejection fraction and infarct area. [68Ga]Annexin A5 uptake was 7.4 ± 1.3 %ID/g within the infarction for the controls and 4.5 ± 1.9 %ID/g for the PTH group (p = .013). TUNEL staining revealed significantly more apoptotic cells in the infarct area on day 2 in the controls (64 ± 9%) compared to the treatment group (52 ± 4%; p = .045). FDG-PET revealed a significant decrease in infarct size in the treatment group and an increase in the controls. Examinations of left ventricular ejection fraction on days 6 and 30 did not reveal treatment effects. [68Ga]Annexin A5 PET can detect the effects of PTH treatment as a marker of apoptosis 2 days after MI; ex vivo examination confirmed significant rescue of myocardiocytes. FDG-PET showed a small but significant reduction in infarct size but no functional improvement. ANIMAL STUDIES have suggested that parathyroid hormone (PTH) treatment after myocardial infarction (MI) shows beneficial effects on infarct size, left ventricular function, and cardiac remodeling and in general attenuates the progression of ischemic cardiomyopathy.1,2 Several mechanisms potentially mediating these effects of PTH have been proposed. First, PTH is known to induce arterial vasodilation by means of a receptor activation evoking intracellular cyclic adenosine monophosphate (cAMP) production.1,2 This pathway plausibly exerts beneficial effects on the perfusion of ischemically afflicted myocardium. Second, PTH induces the mobilization of progenitor cells from the bone marrow into the peripheral blood.3 Third, PTH increases plasma levels of cardiac stromal cell–derived factor 1 (SDF-1), a chemokine facilitating the homing of stem cells into the ischemic heart by activation of chemokine receptor type 4 (CXCR4) (SDF-1/CXCR4 axis).4 These effects lead to increased myocardial perfusion, neovascularization, and enhanced cell survival and regeneration, ultimately resulting in less apoptosis and cardiac remodeling and improved postinfarct cardiac function.1 Serial examinations by positron emission tomography (PET) enable serial in vivo molecular imaging of myocardial survival and viability in small-animal infarct models. PET with the glucose analogue 2-deoxy-2-[18F]fluoro-D-glucose (FDG-PET) gives quantitative information about the viability and the function of damaged myocardium in vivo.5 Furthermore, we recently reported that PET with [68Ga]annexin A5 serves to visualize and quantify phosphatidylserine externalization in the area at risk after myocardial ischemia6; the binding of [68Ga]annexin A5 to externalized phospholipids is considered a surrogate marker for myocardial apoptosis. Based on our earlier findings with FDG and annexin PET, we hypothesized that the myocardial viability and externalization of phosphatidylserine on day 2 after MI correlate with the long-term outcome

    Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia

    Get PDF
    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.</p

    Left ventricular functional assessment in murine models of ischemic and dilated cardiomyopathy using [18 F]FDG-PET: comparison with cardiac MRI and monitoring erythropoietin therapy

    Get PDF
    Background We performed an initial evaluation of non-invasive ECG-gated [18 F]FDG-positron emission tomography (FDG-PET) for serial measurements of left ventricular volumes and function in murine models of dilated (DCM) and ischemic cardiomyopathy (ICM), and then tested the effect of erythropoietin (EPO) treatment on DCM mice in a preliminary FDG-PET therapy monitoring study. Methods Mice developed DCM 8 weeks after injection with Coxsackievirus B3 (CVB3), whereas ICM was induced by ligation of the left anterior descending artery. LV volumes (EDV and ESV) and the ejection fraction (LVEF) of DCM, ICM and healthy control mice were measured by FDG-PET and compared with reference standard results obtained with 1.5 T magnetic resonance imaging (MRI). In the subsequent monitoring study, LVEF of DCM mice was evaluated by FDG-PET at baseline, and after 4 weeks of treatment, with EPO or saline. Results LV volumes and the LVEF as measured by FDG-PET correlated significantly with the MRI results. These correlations were higher in healthy and DCM mice than in ICM mice, in which LVEF measurements were somewhat compromised by absence of FDG uptake in the area of infarction. LV volumes (EDV and ESV) were systematically underestimated by FDG-PET, with net bias such that LVEF measurements in both models of heart disease exceeded by 15% to 20% results obtained by MRI. In our subsequent monitoring study of DCM mice, we found a significant decrease of LVEF in the EPO group, but not in the saline-treated mice. Moreover, LVEF in the EPO and saline mice significantly correlated with histological scores of fibrosis. Conclusions LVEF estimated by ECG-gated FDG-PET significantly correlated with the reference standard MRI, most notably in healthy mice and mice with DCM. FDG-PET served for longitudinal monitoring of effects of EPO treatment in DCM mice

    Positron emission tomography in the assessment of left ventricular function in healthy rats: A comparison of four imaging methods

    No full text
    Objective To measure left ventricular (LV) function parameters in heart of healthy rats by three different positron emission tomography (PET) imaging techniques and by magnetic resonance imaging (MRI). Methods ECG-gated microPET examinations were obtained in seven healthy rats with 2-deoxy-2-[18F]fluoro-d-glucose (FDG) for calculation of LV-function from the blood-pool phase of the dynamic recording (FDGBP), and also from the later myocardial uptake (FDGMyo). On subsequent days, we re-measured LV-function using the novel blood-pool tracer 68Ga-albumin (AlbBP) and again by FDG (FDGMyo2) in one setting. Cine-MRI examination provided the reference standard measurement. Results The mean LV ejection fractions (LVEF) were 56 ± 3 (FDGBP), 55 ± 3 (FDGMyo), 56 ± 3 (FDGMyo2), 57 ± 3 (AlbBP), and 57 ± 2 (MRI). There were good to excellent correlations found between the LVEF-values as compared to MRI reference standard for FDGBP (r = 0.71), FDGMyo (r = 0.86) and AlbBP (r = 0.88). Both of the blood-pool methods significantly overestimated the magnitudes of end-diastolic-volume and end-systolic-volume, whereas FDGMyo matched closely to the MRI reference standard. There was no significant bias for both blood-pool methods and a minor negative bias for FDGMyo regarding the LV ejection fraction (LVEF) when compared to cine-MRI results. There was no significant difference between the means of FDGMyo and FDGMyo2 (P = .50). Conclusions Relative to reference standard MRI measurements of LVEF, there was excellent agreement between PET-based measurements, notably for the novel blood-pool tracer 68Ga-albumin

    In Vivo Monitoring of Parathyroid Hormone Treatment after Myocardial Infarction in Mice with [68Ga]Annexin A5 and [18F]Fluorodeoxyglucose Positron Emission Tomography

    No full text
    [68Ga]Annexin A5 positron emission tomography (PET) reveals the externalization of phosphatidylserine as a surrogate marker for apoptosis. We tested this technique for therapy monitoring in a murine model of myocardial infarction (MI) including parathyroid hormone (PTH) treatment. MI was induced in mice, and they were assigned to the saline or the PTH group. On day 2, they received [68Ga]annexin A5 PET or histofluorescence TUNEL staining. Mice had 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET examinations on days 6 and 30 for calculation of the left ventricular ejection fraction and infarct area. [68Ga]Annexin A5 uptake was 7.4 ± 1.3 %ID/g within the infarction for the controls and 4.5 ± 1.9 %ID/g for the PTH group (p = .013). TUNEL staining revealed significantly more apoptotic cells in the infarct area on day 2 in the controls (64 ± 9%) compared to the treatment group (52 ± 4%; p = .045). FDG-PET revealed a significant decrease in infarct size in the treatment group and an increase in the controls. Examinations of left ventricular ejection fraction on days 6 and 30 did not reveal treatment effects. [68Ga]Annexin A5 PET can detect the effects of PTH treatment as a marker of apoptosis 2 days after MI; ex vivo examination confirmed significant rescue of myocardiocytes. FDG-PET showed a small but significant reduction in infarct size but no functional improvement

    Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: An in vivo imaging study in mice

    No full text
    Positron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [68Ga]annexin A5 PET (annexin-PET) and [18F]fluorodeoxyglucose PET (FDG-PET) after myocardial infarction to determine the time of peak phosphatidylserine externalization in relation to impaired glucose metabolism in infracted tissue. Annexin- and FDG-PET recordings were obtained in female (C57BL6/N) mice on days 1 to 4 after ligation of the left anterior descending (LAD) artery. [68Ga]annexin A5 uptake (%ID/g) in the LAD artery territory increased from 1.7 ± 1.1 on day 1 to 5.0 ± 3.3 on day 2 and then declined to 2.0 ± 1.4 on day 3 (p = .047 vs day 2) and 1.6 ± 1.4 on day 4 (p = .014 vs day 2). These results matched apoptosis rates as estimated by autoradiography and fluorescein staining. FDG uptake (%ID/g) declined from 28 ± 14 on day 1 to 14 ± 3.5 on day 4 (p < .0001 vs day 1). Whereas FDG-PET revealed continuous loss of cell viability after permanent LAD artery occlusion, annexin-PET indicated peak phosphatidylserine expression at day 2, which might be the optimal time point for therapy monitoring
    corecore