27 research outputs found
Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases
In the terrestrial biosphere, biomass deconstruction is conducted by microbes employing a variety of complementary strategies, many of which remain to be discovered. Moreover, the biofuels industry seeks more efficient (and less costly) cellulase formulations upon which to launch the nascent sustainable bioenergy economy. The glycan decoration of fungal cellulases has been shown to protect these enzymes from protease action and to enhance binding to cellulose. We show here that thermal tolerant bacterial cellulases are glycosylated as well, although the types and extents of decoration differ from their Eukaryotic counterparts. Our major findings are that glycosylation of CelA is uniform across its three linker peptides and composed of mainly galactose disaccharides (which is unique) and that this glycosylation dramatically impacts the hydrolysis of insoluble substrates, proteolytic and thermal stability, and substrate binding and changes the dynamics of the enzyme. This study suggests that the glycosylation of CelA is crucial for its exceptionally high cellulolytic activity on biomass and provides the robustness needed for this enzyme to function in harsh environments including industrial settings
Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases
In the terrestrial biosphere, biomass deconstruction is conducted by microbes employing a variety of complementary strategies, many of which remain to be discovered. Moreover, the biofuels industry seeks more efficient (and less costly) cellulase formulations upon which to launch the nascent sustainable bioenergy economy. The glycan decoration of fungal cellulases has been shown to protect these enzymes from protease action and to enhance binding to cellulose. We show here that thermal tolerant bacterial cellulases are glycosylated as well, although the types and extents of decoration differ from their Eukaryotic counterparts. Our major findings are that glycosylation of CelA is uniform across its three linker peptides and composed of mainly galactose disaccharides (which is unique) and that this glycosylation dramatically impacts the hydrolysis of insoluble substrates, proteolytic and thermal stability, and substrate binding and changes the dynamics of the enzyme. This study suggests that the glycosylation of CelA is crucial for its exceptionally high cellulolytic activity on biomass and provides the robustness needed for this enzyme to function in harsh environments including industrial settings
Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths
Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes
Expression of an endoglucanase–cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi
Abstract The low secretion levels of cellobiohydrolase I (CBHI) in yeasts are one of the key barriers preventing yeast from directly degrading and utilizing lignocellulose. To overcome this obstacle, we have explored the approach of genetically linking an easily secreted protein to CBHI, with CBHI being the last to be folded. The Trichoderma reesei eg2 (TrEGII) gene was selected as the leading gene due to its previously demonstrated outstanding secretion in yeast. To comprehensively characterize the effects of this fusion protein, we tested this hypothesis in three industrially relevant yeasts: Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Our initial assays with the L. starkeyi secretome expressing differing TrEGII domains fused to a chimeric Talaromyces emersonii–T. reesei CBHI (TeTrCBHI) showed that the complete TrEGII enzyme, including the glycoside hydrolase (GH) 5 domain is required for increased expression level of the fusion protein when linked to CBHI. We found that this new construct (TrEGII–TeTrCBHI, Fusion 3) had an increased secretion level of at least threefold in L. starkeyi compared to the expression level of the chimeric TeTrCBHI. However, the same improvements were not observed when Fusion 3 construct was expressed in S. cerevisiae and Y. lipolytica. Digestion of pretreated corn stover with the secretomes of Y. lipolytica and L. starkeyi showed that conversion was much better using Y. lipolytica secretomes (50% versus 29%, respectively). In Y. lipolytica, TeTrCBHI performed better than the fusion construct. Furthermore, S. cerevisiae expression of Fusion 3 construct was poor and only minimal activity was observed when acting on the substrate, pNP-cellobiose. No activity was observed for the pNP-lactose substrate. Clearly, this approach is not universally applicable to all yeasts, but works in specific cases. With purified protein and soluble substrates, the exoglucanase activity of the GH7 domain embedded in the Fusion 3 construct in L. starkeyi was significantly higher than that of the GH7 domain in TeTrCBHI expressed alone. It is probable that a higher fraction of fusion construct CBHI is in an active form in Fusion 3 compared to just TeTrCBHI. We conclude that the strategy of leading TeTrCBHI expression with a linked TrEGII module significantly improved the expression of active CBHI in L. starkeyi
High activity CAZyme cassette for improving biomass degradation in thermophiles
Abstract Background Thermophilic microorganisms and their enzymes offer several advantages for industrial application over their mesophilic counterparts. For example, a hyperthermophilic anaerobe, Caldicellulosiruptor bescii, was recently isolated from hot springs in Kamchatka, Siberia, and shown to have very high cellulolytic activity. Additionally, it is one of a few microorganisms being considered as viable candidates for consolidated bioprocessing applications. Moreover, C. bescii is capable of deconstructing plant biomass without enzymatic or chemical pretreatment. This ability is accomplished by the production and secretion of free, multi-modular and multi-functional enzymes, one of which, CbCel9A/Cel48A also known as CelA, is able to outperform enzymes found in commercial enzyme preparations. Furthermore, the complete C. bescii exoproteome is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Therefore, understanding the functional diversity of enzymes in the C. bescii exoproteome and how inter-molecular synergy between them confers C. bescii with its high cellulolytic activity is an important endeavor to enable the production of more efficient biomass degrading enzyme formulations and in turn, better cellulolytic industrial microorganisms. Results To advance the understanding of the C. bescii exoproteome we have expressed, purified, and tested four of the primary enzymes found in the exoproteome and we have found that the combination of three or four of the most highly expressed enzymes exhibit synergistic activity. We also demonstrated that discrete combinations of these enzymes mimic and even improve upon the activity of the whole C. bescii exoproteome, even though some of the enzymes lack significant activity on their own. Conclusions We have demonstrated that it is possible to replicate the cellulolytic activity of the native C. bescii exoproteome utilizing a minimal gene set, and that these minimal gene sets are more active than the whole exoproteome. In the future, this may lead to more simplified and efficient cellulolytic enzyme preparations or yield improvements when these enzymes are expressed in microorganisms engineered for consolidated bioprocessing
Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi
Abstract Background Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. Results To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Conclusions Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well
Homologous Expression of the <i>Caldicellulosiruptor bescii</i> CelA Reveals that the Extracellular Protein Is Glycosylated
<div><p>Members of the bacterial genus <i>Caldicellulosiruptor</i> are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. This architecture exploits the cellulose surface ablation driven by its general cellulase processivity as well as excavates cavities into the surface of the substrate, revealing a novel paradigm for cellulase activity. We recently reported that a deletion of <i>celA</i> in <i>C</i>. <i>bescii</i> had a significant effect on its ability to utilize complex biomass. To analyze the structure and function of CelA and its role in biomass deconstruction, we constructed a new expression vector for <i>C</i>. <i>bescii</i> and were able, for the first time, to express significant quantities of full-length protein <i>in vivo</i> in the native host. The protein, which contains a Histidine tag, was active and excreted from the cell. Expression of CelA protein with and without its signal sequence allowed comparison of protein retained intracellularly to protein transported extracellularly. Analysis of protein in culture supernatants revealed that the extracellular CelA protein is glycosylated whereas the intracellular CelA is not, suggesting that either protein transport is required for this post-translational modification or that glycosylation is required for protein export. The mechanism and role of protein glycosylation in bacteria is poorly understood and the ability to express CelA <i>in vivo</i> in <i>C</i>. <i>bescii</i> will allow the study of the mechanism of protein glycosylation in this thermophile. It will also allow the study of glycosylation of CelA itself and its role in the structure and function of this important enzyme in biomass deconstruction.</p></div
Strains and plasmids used in this work.
<p><sup><i>a</i></sup><i>German Collection of Microorganisms and Cell Cultures</i></p><p>Strains and plasmids used in this work.</p
Expression of full-length CelA in <i>C</i>. <i>bescii</i>.
<p>A) A diagram of CelA: SP, signal peptide; GH9, Family 9A glycoside hydrolase domain; CBM, carbohydrate binding modules—one family 3 type C followed by two family 3 type B; GH48, Family 48 glycoside hydrolase domain. B). An expression cassette that contains the regulatory region of the <i>C</i>. <i>bescii</i> S-layer protein, a <i>C</i>-terminal 6X His-tag version of <i>celA</i> (Cbes1867), a Rho-independent terminator, the <i>pyrF</i> (from <i>C</i>. <i>thermocellum</i>) cassette for selection in <i>C</i>. <i>bescii</i> and pBAS2 sequences for replication in <i>Caldicellulosiruptor spp</i>. C) SDS-PAGE gel (4 to 15% gradient) stained with Coomassie Brilliant Blue showing 100 μg of cell free extract from: Lane 1, MW standards (BioRad); Lane 2, wild type <i>C</i>. <i>bescii</i> JWCB001; Lane 3, JWCB040 <i>ΔpyrFA</i> pDCW170::<i>celA</i>.</p