113 research outputs found

    A computational method to predict genetically encoded rare amino acids in proteins

    Get PDF
    In several natural settings, the standard genetic code is expanded to incorporate two additional amino acids with distinct functionality, selenocysteine and pyrrolysine. These rare amino acids can be overlooked inadvertently, however, as they arise by recoding at certain stop codons. We report a method for such recoding prediction from genomic data, using read-through similarity evaluation. A survey across a set of microbial genomes identifies almost all the known cases as well as a number of novel candidate proteins

    AlphaFold predicts the most complex protein knot and composite protein knots

    Full text link
    The computer artificial intelligence system AlphaFold has recently predicted previously unknown three-dimensional structures of thousands of proteins. Focusing on the subset with high-confidence scores, we algorithmically analyze these predictions for cases where the protein backbone exhibits rare topological complexity, i.e. knotting. Amongst others, we discovered a 717_1-knot, the most topologically complex knot ever found in a protein, as well several 6-crossing composite knots comprised of two methyltransferase or carbonic anhydrase domains, each containing a simple trefoil knot. These deeply embedded composite knots occur evidently by gene duplication and interconnection of knotted dimers. Finally, we report two new five-crossing knots including the first 515_1-knot. Our list of analyzed structures forms the basis for future experimental studies to confirm these novel knotted topologies and to explore their complex folding mechanisms.Comment: This article appeared openly accessible in M. A. Brems et al., Protein Science. 2022; 31( 8):e4380 and may be found at https://doi.org/10.1002/pro.438

    Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships.</p> <p>Results</p> <p>We detect coordinated regulation of multiple protein complexes using <it>logic analysis </it>of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi.</p> <p>Conclusions</p> <p>The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome, we derive a large network involving this essential cellular complex. In this network we find that all multi-protein complexes that belong to the same functional class are regulated in the same direction as a group (either induced or repressed).</p

    The Structure of β-Carbonic Anhydrase from the Carboxysomal Shell Reveals a Distinct Subclass with One Active Site for the Price of Two

    Get PDF
    CsoSCA (formerly CsoS3) is a bacterial carbonic anhydrase localized in the shell of a cellular microcompartment called the carboxysome, where it converts HCO-3 to CO2 for use in carbon fixation by ribulose-bisphosphate carboxylase/oxygenase (RuBisCO). CsoSCA lacks significant sequence similarity to any of the four known classes of carbonic anhydrase (α, β, γ, or δ), and so it was initially classified as belonging to a new class, ϵ. The crystal structure of CsoSCA from Halothiobacillus neapolitanus reveals that it is actually a representative member of a new subclass of β-carbonic anhydrases, distinguished by a lack of active site pairing. Whereas a typical β-carbonic anhydrase maintains a pair of active sites organized within a two-fold symmetric homodimer or pair of fused, homologous domains, the two domains in CsoSCA have diverged to the point that only one domain in the pair retains a viable active site. We suggest that this defunct and somewhat diminished domain has evolved a new function, specific to its carboxysomal environment. Despite the level of sequence divergence that separates CsoSCA from the other two subclasses of β-carbonic anhydrases, there is a remarkable level of structural similarity among active site regions, which suggests a common catalytic mechanism for the interconversion of HCO-3 and CO2. Crystal packing analysis suggests that CsoSCA exists within the carboxysome shell either as a homodimer or as extended filaments

    Structural Analysis of CsoS1A and the Protein Shell of the \u3ci\u3eHalothiobacillus neapolitanus\u3c/i\u3e Carboxysome

    Get PDF
    The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/ oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels

    The Crystal Structure of a Cyanobacterial Water-Soluble Carotenoid Binding Protein

    Get PDF
    AbstractCarotenoids undergo a wide range of photochemical reactions in animal, plant, and microbial systems. In photosynthetic organisms, in addition to light harvesting, they perform an essential role in protecting against light-induced damage by quenching singlet oxygen, superoxide anion radicals, or triplet-state chlorophyll. We have determined the crystal structure of a water-soluble orange carotenoid protein (OCP) isolated from the cyanobacterium Arthrospira maxima at a resolution of 2.1 Ã…. OCP forms a homodimer with one carotenoid molecule per monomer. The carotenoid binding site is lined by a striking number of methionine residues. The structure reveals several possible ways in which the protein environment influences the spectral properties of the pigment and provides insight into how the OCP carries out its putative functions in photoprotection
    • …
    corecore