2,990 research outputs found

    Electro-optic network analyzer

    Get PDF
    The bandwidth of frequency domain measurement methods of electrical signals has usually been far greater than the bandwidth of time domain methods. The primary limits of the time domain approach have been the 20 to 30 GHz bandwidth limit for electronic waveform acquisition instrumentation, and the lack of usable electrical pulse generators for excitation of a test device. The bandwidth of frequency domain network analysis appears to have reached a plateau of between 100 to 200 GHz, while time domain measurement have improved markedly in both bandwidth and sensitivity with the introduction of the pulsed laser based electro-optic sampling approach. Network analysis or the measurement of device scattering parameters provides information necessary to the design of electronic network such as high frequency amplifiers, mixers, and phase shifter. The bandwidth of frequency domain network analysis is currently being exceeded by the next generations of high frequency transistors and devices. Thus the electro-optic approach is a natural means of extending network analysis into the range above 100 GHz by employing time domain methods. In this approach, a suitable electrical excitation pulse is generated and propagated along a transmission line toward a test device. In the picosecond domain, laser driven photoconductive switches provide a unique method of generating electrical transients. Several materials were studied for generating short electrical pulses using photoconductive switches. The various semiconductive materials tested for photoconductive switching, and the electro-optic measurement technique used to characterize the material performance are described

    On Maltsev Digraphs

    Get PDF
    This is an Open Access article, first published by E-CJ on 25 February 2015.We study digraphs preserved by a Maltsev operation: Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing in this way that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. We then generalize results from Kazda (2011) to show that a Maltsev digraph is preserved not only by a majority operation, but by a class of other operations (e.g., minority, Pixley) and obtain a O(|VG|4)-time algorithm to recognize Maltsev digraphs. We also prove analogous results for digraphs preserved by conservative Maltsev operations which we use to establish that the list homomorphism problem for Maltsev digraphs is in L. We then give a polynomial time characterisation of Maltsev digraphs admitting a conservative 2-semilattice operation. Finally, we give a simple inductive construction of directed acyclic digraphs preserved by a Maltsev operation, and relate them with series parallel digraphs.Peer reviewedFinal Published versio

    Performance Evaluation with Stochastic Discount Factors

    Get PDF
    We study the use of stochastic discount factor (SDF) models in evaluating the investment performance of portfolio managers. By constructing artificial mutual funds with known levels of investment ability, we evaluate a large set of SDF models. We find that the measures of performance are not highly sensitive to the SDF model, and that most of the models have a mild negative bias when performance is neutral. We use the models to evaluate a sample of U.S. equity mutual funds. Adjusting for the observed bias, we find that the average mutual fund has enough ability to cover its transactions costs. Extreme funds are more likely to have good rather than poor risk adjusted performance. Our analysis also reveals a number of implementation issues relevant to other applications of SDF models.

    Diversity Within the Wildlife Profession in Alaska

    Get PDF
    Research Poste
    • …
    corecore