2,242 research outputs found

    Measurements of underwater piling noise during nearshore windfarm construction in the UK potential impact on marine mammals in compliance with German UBA limit

    Get PDF
    Offshore construction work, such as pile and conductor driving, can potentially cause acoustic disturbance to marine mammals, such as cetaceans (whales, dolphins and por-poises), the odontocetes (toothed cetaceans) of which rely on the underwater sound field for spatial orientation, navigation, prey capture, communication, and predator avoidance. Disturbance ranges from behavioural changes, masking of communication signals, and temporary or even permanent hearing loss. There is currently no specific legal noise threshold in UK waters, but the Marine Management Organisation (MMO) has stipulated the requirement for noise monitoring during pile-driving operations when some windfarms are constructed. Measurements presented in this paper were taken during nearshore pile driving in the UK from a support vessel located 750 m from each pile (wind-turbine foun-dation). Results were compared with a threshold issued by the German Federal Environ-ment Agency (UBA). Noise level beyond the measurement location was predicted using a numerical model. Comparing results with the Southall criteria (Southall, B. L., et al., Ma-rine Mammal Noise Exposure Criteria: Initial Scientific Recommendations. Aquatic Mam-mals, 33 (4), 2007), the Joint Nature Conservation Committee (JNCC) 500 m exclusion zone offered protection for most of marine mammals during pile driving events in this particular case. Keywords: Underwater piling noise, wind-farm, marine mammals, UBA limi

    On the Ground Validation of Online Diagnosis with Twitter and Medical Records

    Full text link
    Social media has been considered as a data source for tracking disease. However, most analyses are based on models that prioritize strong correlation with population-level disease rates over determining whether or not specific individual users are actually sick. Taking a different approach, we develop a novel system for social-media based disease detection at the individual level using a sample of professionally diagnosed individuals. Specifically, we develop a system for making an accurate influenza diagnosis based on an individual's publicly available Twitter data. We find that about half (17/35 = 48.57%) of the users in our sample that were sick explicitly discuss their disease on Twitter. By developing a meta classifier that combines text analysis, anomaly detection, and social network analysis, we are able to diagnose an individual with greater than 99% accuracy even if she does not discuss her health.Comment: Presented at of WWW2014. WWW'14 Companion, April 7-11, 2014, Seoul, Kore

    On the Ground Validation of Online Diagnosis with Twitter and Medical Records

    Full text link
    Social media has been considered as a data source for tracking disease. However, most analyses are based on models that prioritize strong correlation with population-level disease rates over determining whether or not specific individual users are actually sick. Taking a different approach, we develop a novel system for social-media based disease detection at the individual level using a sample of professionally diagnosed individuals. Specifically, we develop a system for making an accurate influenza diagnosis based on an individual's publicly available Twitter data. We find that about half (17/35 = 48.57%) of the users in our sample that were sick explicitly discuss their disease on Twitter. By developing a meta classifier that combines text analysis, anomaly detection, and social network analysis, we are able to diagnose an individual with greater than 99% accuracy even if she does not discuss her health.Comment: Presented at of WWW2014. WWW'14 Companion, April 7-11, 2014, Seoul, Kore

    Regulation of Ack-Family Nonreceptor Tyrosine Kinases

    Get PDF
    Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design

    Immunostaining for Homer reveals the majority of excitatory synapses in laminae I-III of the mouse spinal dorsal horn

    Get PDF
    The spinal dorsal horn processes somatosensory information before conveying it to the brain. The neuronal organization of the dorsal horn is still poorly understood, although recent studies have defined several distinct populations among the interneurons, which account for most of its constituent neurons. All primary afferents, and the great majority of neurons in laminae I–III are glutamatergic, and a major factor limiting our understanding of the synaptic circuitry has been the difficulty in identifying glutamatergic synapses with light microscopy. Although there are numerous potential targets for antibodies, these are difficult to visualize with immunocytochemistry, because of protein cross-linking following tissue fixation. Although this can be overcome by antigen retrieval methods, these lead to difficulty in detecting other antigens. The aim of this study was to test whether the postsynaptic protein Homer can be used to reveal glutamatergic synapses in the dorsal horn. Immunostaining for Homer gave punctate labeling when viewed by confocal microscopy, and this was restricted to synapses at the ultrastructural level. We found that Homer puncta were colocalized with the AMPA receptor GluR2 subunit, but not with the inhibitory synapse-associated protein gephyrin. We also examined several populations of glutamatergic axons and found that the great majority of boutons were in contact with at least one Homer punctum. These results suggest that Homer antibodies can be used to reveal the great majority of glutamatergic synapses without antigen retrieval. This will be of considerable value in tracing synaptic circuits, and also in investigating plasticity of glutamatergic synapses in pain states

    Fractals from Regular Behaviours

    Get PDF

    Fractals from Regular Behaviours

    Full text link
    We are interested in connections between the theory of fractal sets obtained as attractors of iterated function systems and process calculi. To this end, we reinterpret Milner's expressions for processes as contraction operators on a complete metric space. When the space is, for example, the plane, the denotations of fixed point terms correspond to familiar fractal sets. We give a sound and complete axiomatization of fractal equivalence, the congruence on terms consisting of pairs that construct identical self-similar sets in all interpretations. We further make connections to labelled Markov chains and to invariant measures. In all of this work, we use important results from process calculi. For example, we use Rabinovich's completeness theorem for trace equivalence in our own completeness theorem. In addition to our results, we also raise many questions related to both fractals and process calculi
    corecore